简介概要

基于万有引力的煤层底板突水预测算法

来源期刊:煤炭学报2015年第S2期

论文作者:刘雪艳 张雪英 李凤莲

文章页码:458 - 463

关键词:底板突水预测;万有引力;半监督学习;有限样本数据;

摘    要:传统的基于机器学习的煤层突水预测方法需要大量的训练样本进行预测模型的训练。而在矿井突水问题中,大量训练样本的获得基本上是不可能的。主要研究在突水样本数据有限的情况下提高煤层突水预测结果的准确性。结合山西省某煤矿的实际情况,提出了一种新颖的基于万有引力的煤层底板突水预测方法(Gravitational force based algorithm,GFA)。该算法采用半监督的学习方式,将万有引力公式引入到预测模型中,利用少量的突水训练样本作为引力的源点吸引测试样本进行突水安全状态的传递,进而实现突水测试样本安全性的预测。将提出的算法用于历史突水数据以及实际的煤层底板突水数据进行实验,实验结果表明,在突水训练数据有限的情况下,提出的基于万有引力的煤层底板突水预测算法可获得良好的预测效果。

详情信息展示

基于万有引力的煤层底板突水预测算法

刘雪艳,张雪英,李凤莲

太原理工大学信息工程学院

摘 要:传统的基于机器学习的煤层突水预测方法需要大量的训练样本进行预测模型的训练。而在矿井突水问题中,大量训练样本的获得基本上是不可能的。主要研究在突水样本数据有限的情况下提高煤层突水预测结果的准确性。结合山西省某煤矿的实际情况,提出了一种新颖的基于万有引力的煤层底板突水预测方法(Gravitational force based algorithm,GFA)。该算法采用半监督的学习方式,将万有引力公式引入到预测模型中,利用少量的突水训练样本作为引力的源点吸引测试样本进行突水安全状态的传递,进而实现突水测试样本安全性的预测。将提出的算法用于历史突水数据以及实际的煤层底板突水数据进行实验,实验结果表明,在突水训练数据有限的情况下,提出的基于万有引力的煤层底板突水预测算法可获得良好的预测效果。

关键词:底板突水预测;万有引力;半监督学习;有限样本数据;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号