Estimation of sand liquefaction based on support vector machines
来源期刊:中南大学学报(英文版)2008年第z2期
论文作者:苏永华 马宁 胡检 杨小礼
文章页码:15 - 20
Key words:sand liquefaction; influence factors; support vector machines; grade
Abstract: The origin and influence factors of sand liquefaction were analyzed, and the relation between liquefaction and its influence factors was founded. A model based on support vector machines (SVM) was established whose input parameters were selected as following influence factors of sand liquefaction: magnitude (M), the value of SPT, effective pressure of superstratum, the content of clay and the average of grain diameter. Sand was divided into two classes: liquefaction and non-liquefaction, and the class label was treated as output parameter of the model. Then the model was used to estimate sand samples, 20 support vectors and 17 borderline support vectors were gotten, then the parameters were optimized, 14 support vectors and 6 borderline support vectors were gotten, and the prediction precision reaches 100%. In order to verify the generalization of the SVM method, two other practical samples’ data from two cities, Tangshan of Hebei province and Sanshui of Guangdong province, were dealt with by another more intricate model for polytomies, which also considered some influence factors of sand liquefaction as the input parameters and divided sand into four liquefaction grades: serious liquefaction, medium liquefaction, slight liquefaction and non-liquefaction as the output parameters. The simulation results show that the latter model has a very high precision, and using SVM model to estimate sand liquefaction is completely feasible.