基于蚁群优化算法的支持向量机参数选择及仿真

来源期刊:中南大学学报(自然科学版)2008年第6期

论文作者:刘春波 王鲜芳 潘 丰

文章页码:1309 - 1313

关键词:蚁群算法;支持向量回归机;参数选择;优化

Key words:ant colony algorithm; support vector regression; parameters selection; optimization

摘    要:基于支持向量回归机(SVR)模型的拟合精度和泛化能力取决于其相关参数的选取,以蚁群优化算法为基础,给出支持向量回归机参数优化的一种新方法。该方法以最小化k-fold交叉验证误差为目标,对支持向量回归机中的核参数σ和惩罚系数C由蚁群系统中的节点值体现,数值的优选通过蚂蚁对最优路径的选择进行确定。计算机仿真结果表明:与正交法、遗传算法等相比,该方法在参数优化方面有良好的鲁棒性能和较强的全局搜索能力;该方法用于青霉素发酵过程的建模研究,建模精度较高。

Abstract: Based on the fact that the regression accuracy and generalization performance of the support vector regression (SVR) models depend on a proper setting of its parameters, a new trial was applied in parameters selection. The new optimal selection approach of SVR parameters was put forward based on ant colony optimization (ACO) algorithm. The k-fold cross-validation error was used as the fitness function of ACO. The node values in ant system were reflected by the kernel parameter σ and regularization parameter C of SVR. The optimal values are equal to those of the best route which are decided by ants. Simulation results show that the optimal selection approach based on ACO has good robustness and strong global search capability. The method used for the research of modeling in the penicillin ferment process obtains higher accuracy.

基金信息:国家“863”计划项目

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号