Properties and Microstructure of Polymer Emulsions Modifi ed Fibers Reinforced Cementitious Composites
来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2014年第4期
论文作者:孙乾耀 KONG Lian FANG He
文章页码:795 - 802
摘 要:The synthesis and characterization of a new class of cementitious composites filled with polymer emulsions were investigated, and their superior mechanical strength and durability properties compared to composites devoid of fi llers were reported. Polymer emulsions were utilized to mechanically reinforce the composite and bridge the cement, fly ash, aggregate and fibers. The results reveal that the epoxy emulsion and poly(ethylene-co-vinyl acetate) emulsion markedly enhance the mechanical and durability properties of cemetitious composites. The fi bers can be pulled out in the form of slip-hardening and the abrasion phenomenon can be observed clearly on the surface of the fibers. The hydration extent of cement is higher than that of the pristine composites. The polymer modified cementitious composites designed on micromechanics, have fl exibility and plasticity which could be applied for a novel form of multifunctional materials with a range of pipeline coatings applications.
孙乾耀1,2,KONG Lian1,FANG He1
1. College of Science, China University of Petroleum (Beijing)2. Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing)
摘 要:The synthesis and characterization of a new class of cementitious composites filled with polymer emulsions were investigated, and their superior mechanical strength and durability properties compared to composites devoid of fi llers were reported. Polymer emulsions were utilized to mechanically reinforce the composite and bridge the cement, fly ash, aggregate and fibers. The results reveal that the epoxy emulsion and poly(ethylene-co-vinyl acetate) emulsion markedly enhance the mechanical and durability properties of cemetitious composites. The fi bers can be pulled out in the form of slip-hardening and the abrasion phenomenon can be observed clearly on the surface of the fibers. The hydration extent of cement is higher than that of the pristine composites. The polymer modified cementitious composites designed on micromechanics, have fl exibility and plasticity which could be applied for a novel form of multifunctional materials with a range of pipeline coatings applications.
关键词: