Kriging和距离因子辅助的全局优化方法
来源期刊:机械设计与制造2021年第4期
论文作者:白政民 李耀辉
文章页码:15 - 18
关键词:Kriging元模型;距离因子;加点采样法则;全局优化;
摘 要:基于Kriging元模型的优化方法通常存在优化效率较低、收敛速度较慢、昂贵估值次数较多且难以有效平衡Kriging模型的局部与全局搜索行为等弊端。为此,提出一种序列Kriging和距离因子辅助的全局优化方法。其实现过程主要包含两个阶段:一是利用Kriging模型近似复杂昂贵的黑箱函数;二是利用Kriging模型与距离因子的乘积构造加点采样法则,并通过免于求导的DIRECT算法优化该法则,以获取新的昂贵估值点。六个数值函数测试和一个摆线泵仿真实例验证所提出方法的有效性。
白政民,李耀辉
许昌学院电气(机电)工程学院
摘 要:基于Kriging元模型的优化方法通常存在优化效率较低、收敛速度较慢、昂贵估值次数较多且难以有效平衡Kriging模型的局部与全局搜索行为等弊端。为此,提出一种序列Kriging和距离因子辅助的全局优化方法。其实现过程主要包含两个阶段:一是利用Kriging模型近似复杂昂贵的黑箱函数;二是利用Kriging模型与距离因子的乘积构造加点采样法则,并通过免于求导的DIRECT算法优化该法则,以获取新的昂贵估值点。六个数值函数测试和一个摆线泵仿真实例验证所提出方法的有效性。
关键词:Kriging元模型;距离因子;加点采样法则;全局优化;