基于PLSR的深度信念网输出权值确定方法
来源期刊:控制工程2018年第4期
论文作者:索明何 程乐
文章页码:668 - 676
关键词:深度信念网络;输出权值;偏最小二乘回归;主成分提取;
摘 要:针对深度信念网络(Deep Belief Networks,DBN)微调阶段过度依赖梯度而导致很难获取最优输出权值的问题,提出一种基于偏最小二乘回归(Partial Least Square Regression,PLSR)的DBN输出权值确定新方法。通过PLSR和DBN相结合,实现对DBN最后一个隐含层状态进行主成分提取,在最后一个隐含层与输出层之间建立PLSR模型,以更精确的特征来确定更好的输出权值。在一系列标准数据集上的实验结果表明,该方法能够获取更好的DBN输出权值,从而提高DBN的性能。
索明何,程乐
淮安信息职业技术学院电子工程研究中心
摘 要:针对深度信念网络(Deep Belief Networks,DBN)微调阶段过度依赖梯度而导致很难获取最优输出权值的问题,提出一种基于偏最小二乘回归(Partial Least Square Regression,PLSR)的DBN输出权值确定新方法。通过PLSR和DBN相结合,实现对DBN最后一个隐含层状态进行主成分提取,在最后一个隐含层与输出层之间建立PLSR模型,以更精确的特征来确定更好的输出权值。在一系列标准数据集上的实验结果表明,该方法能够获取更好的DBN输出权值,从而提高DBN的性能。
关键词:深度信念网络;输出权值;偏最小二乘回归;主成分提取;