Integrated search technique for parameter determination of SVM for speech recognition

来源期刊:中南大学学报(英文版)2016年第6期

论文作者:Teena Mittal R. K. Sharma

文章页码:1390 - 1398

Key words:support vector machine (SVM); predator prey optimization; speech recognition; mel-frequency cepstral coefficients; wavelet packets; Hooke-Jeeves method

Abstract: Support vector machine (SVM) has a good application prospect for speech recognition problems; still optimum parameter selection is a vital issue for it. To improve the learning ability of SVM, a method for searching the optimal parameters based on integration of predator prey optimization (PPO) and Hooke-Jeeves method has been proposed. In PPO technique, population consists of prey and predator particles. The prey particles search the optimum solution and predator always attacks the global best prey particle. The solution obtained by PPO is further improved by applying Hooke-Jeeves method. Proposed method is applied to recognize isolated words in a Hindi speech database and also to recognize words in a benchmark database TI-20 in clean and noisy environment. A recognition rate of 81.5% for Hindi database and 92.2% for TI-20 database has been achieved using proposed technique.

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号