一类更广泛的Korteweg-de Vries方程的初边值问题
来源期刊:中南大学学报(自然科学版)1988年第1期
论文作者:杨灵娥
文章页码:85 - 93
关键词:KdV方程; 加辽金法; 先验估计; 边值问题; 初值问题; 广义解; 存在性
Key words:KdV equation; Galerkin’s method; a priori estimation; boundary-value problem; initial-value problem; generalized solution; existence
摘 要:本文利用Galerkin方法和解的先验估计,研究了一类更广泛的Korteweg-de Vries方程的初边值问题。 ut+f(u)x-αuxx+uxxx=0 (x,t)∈R+×[0,T] u(x,t)|t=0=u0(x) x∈R+ u(x,t)|x=0=0 u(x,t)→0 (x→∞)及 ut+f(u)x-uxxx=0 u(x,t)|t=0=u0(x) x∈R+ u(x,t)|x=0=ux(x,t)|x=0=0 u(x,t)→0,(x→∞)弱解的存在性,在适当的条件下,还可以得到古典解的存在性。
Abstract: Using Galerkin Approximation and a prior estimate, we proved the existence of the weak solution for the initial-boundary value problem of a generalized KdV equation. Under the suitable conditions, we also proved the existence of a classical solution.