简介概要

Fabrication and Sensing Performance of Smart Composite Structures Using Optical Fibre Sensors

来源期刊:材料科学与工程学报2000年增刊第1期

论文作者:R P Tatam S W James C Y Wei C C Ye P E lrving

关键词:Fibre Bragg grating sensor; Strain sensor; Smart materials;

摘    要:This paper determines the performance of Fibre Bragg Grating (FBG) sensors for strain sensing applications in carbon fibre composite materials. Carbon fibre laminates in either cross-plied or quasiisotropic stacking sequences were fabricated using T300/Hexcel 914 prepregs. The FBG optical sensors were either surface attached, or embedded within laminates. The sensor orientation was aligned either parallel or transverse to the adjacent carbon fibre layers. The composite structures with integrated FBG sensors were subjected to static tensile loading. A scanning fibre Fabry-Perot filter was used to monitor the reflected Bragg wavelengths. The optical sensor embedded between two 90° carbon fibre plies shows a high sensitivity to multi-site cracking formed in the transverse plies. The embedding in 90° plies seems to change the local stress distributions and to become a source of crack initiation. Efficient stress transfer from the host materials to the sensors is dependent upon incorporation methods, the thickness of the adhesive layers, and the location of the sensors.

详情信息展示

Fabrication and Sensing Performance of Smart Composite Structures Using Optical Fibre Sensors

R P Tatam1,S W James1,C Y Wei3,C C Ye1,P E lrving3

(1.Optical Sensors Group, Centre for Photonics and Optical Eng.;
2. School of Mech.. Eng.Cranfield University, Cranfield, Bedford MK43 OAL, UK;
3.Damage Tolerance Group, School of Industrial and Manufacturing Science)

摘要:This paper determines the performance of Fibre Bragg Grating (FBG) sensors for strain sensing applications in carbon fibre composite materials. Carbon fibre laminates in either cross-plied or quasiisotropic stacking sequences were fabricated using T300/Hexcel 914 prepregs. The FBG optical sensors were either surface attached, or embedded within laminates. The sensor orientation was aligned either parallel or transverse to the adjacent carbon fibre layers. The composite structures with integrated FBG sensors were subjected to static tensile loading. A scanning fibre Fabry-Perot filter was used to monitor the reflected Bragg wavelengths. The optical sensor embedded between two 90° carbon fibre plies shows a high sensitivity to multi-site cracking formed in the transverse plies. The embedding in 90° plies seems to change the local stress distributions and to become a source of crack initiation. Efficient stress transfer from the host materials to the sensors is dependent upon incorporation methods, the thickness of the adhesive layers, and the location of the sensors.

关键词:Fibre Bragg grating sensor; Strain sensor; Smart materials;

【全文内容正在添加中】

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号