喷射沉积SiCp/ Al基复合材料致密化及其显微组织与力学性能

来源期刊:中国有色金属学报2017年第7期

论文作者:贺毅强 李俊杰 周海生 冯立超 陈志钢

文章页码:1352 - 1361

关键词:喷射沉积;颗粒增强;铝基复合材料;致密

Key words:spray deposition; particle reinforcement; Al-matrix composite; densification

摘    要:采用热压后多道次热轧制备喷射沉积SiCp/Al-8.5Fe-1.3V-1.7Si复合材料板材,研究热压、轧制工艺参数对复合材料显微组织、力学性能的影响。对热压后和轧制后的SiC颗粒的形状与分布、弥散粒子形貌、致密度与硬度进行研究,并分析与总结致密化过程中孔隙与沉积颗粒的变形。结果表明:在热压温度480 ℃、压力125 MPa,且当坯料直径略小于热压模内径时进行热压会产生一定程度的剪切变形,有利于SiC颗粒的均匀分布和孔洞的闭合;此时弥散粒子粒径为50~80 nm,晶粒粒径为600~900 nm,位错少,相对密度达98.8%,但仍残留孔隙。轧制过程中的大剪切变形促进了沉积颗粒的变形和颗粒之间冶金结合,有利于提高材料的致密度和力学性能。经480 ℃多道次热轧,沉积颗粒边界消失,弥散粒子钉扎位错,Al12(Fe,V)3Si约为100 nm、晶粒约为1 μm,无明显Al13Fe4相析出,材料相对密度达99.5%。当轧制总压下量低于20%时,SiC颗粒无序分布,孔隙减少,密度和硬度增加;当总压下量为20%~40%时,由于SiC颗粒相对基体转动和滑动产生孔隙引起密度和硬度下降。总压下量超过40%时,SiC颗粒的长轴方向平行于轧制方向,SiC颗粒与基体之间的间隙逐渐弥合,密度和硬度升高。当总压下量达到95%,相对密度达99.5%。

Abstract: SiCp/Al-8.5Fe-1.3V-1.7Si composite prepared by spray deposition were densified by hot pressing, and then were rolled into sheets. Effects of hot pressing parameters and rolling parameters on microstructure and mechanical properties were investigated. Shape and distribution of SiC particles, shape of dispersoids, density and hardness of the composite as-hot pressed and as-rolled were studied separately. Evolution of pores and deposited particles during densification process were discussed and summarized. The results show that hot pressing temperature of 480 ℃ and 125 MPa, and smaller diameter of the billet than the inner diameter of the hot die are benefit for homogeneous distribution of SiC particles and void closing. Dispersoids of the composite as-pressed is 50-80 nm in diameter, and grain is 600~900 nm in diameter with few dislocation in the grains. Relative density of the composite as-pressed is up to 98.8% with residual pores remaining. Large plastic shear strain of multi-pass hot rolling contributes to deformation of deposited particles and metallurgical bonding between the particles, subsequently benefits to densification and mechanical properties of the composites. After multi-pass hot rolling at 480 ℃, boundaries among deposited particles disappear, and dislocations are pinned by dispersoids in the matrix with Al12(Fe,V)3Si dispersoids of about 100 nm, and grains are about 1 μm in diameter without Al13Fe4 forming. Relative density of the composite as-rolled is up to 99.5%. SiC particles distribute randomly, and density and hardness increase because of pore reducing and eliminating when cumulative reduction is below 20%. Then density and hardness decrease because of pores resulted from rotation and sliding between SiC particles and the matrix when cumulatie reduction is 20%-40%. Long axis of SiC particle becomes parallel to rolling direction, pores between SiC particles and the matrix disappear, and density and hardness increase when cumulative reduction is over 40%. Relative density of the composite is up to 99.5% with cumulative reduction of 95%.

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号