简介概要

Compression Mechanical Behaviour of 7075 Aluminium Matrix Composite Reinforced with Nano-sized SiC Particles in Semisolid State

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2016年第11期

论文作者:Jufu Jiang Gang Chen Ying Wang

文章页码:1197 - 1203

摘    要:The 7075 aluminium matrix composite reinforced with nano-sized Si C particles was fabricated by ultrasonic assisted semisolid stirring method. The compression mechanical behaviour of the fabricated composite in semisolid state was investigated. The results show that the microstructure of the composite before semisolid compression consists of fine and spheroidal solid grains surrounded by liquid phase.Semisolid compression led to a nonuniform plastic deformation of solid grains. A slight plastic deformation occurred in the locations near the free surface due to the dependence of deformation on liquid flow and flow of liquid incorporating solid grains. However, obvious plastic deformation occurred in the central location and location contacting to die due to the contribution of plastic deformation of solid grains.The true stress–strain curve of the sample compressed at 500 °C consists of rapid increase of true stress and steady stage. However, rapid increase of true stress and decrease of true stress and steady stage are involved in the true stress–strain curves of the samples compressed at 550, 560, 570, 580 and 590 °C.The true stress–strain curve at 600 °C is similar to that at 500 °C. Apparent viscosity decreases with an increase of shear rate, indicating a shear thinning occurrence. When soaking time increases from 5 min to 15 min, the peak stress and steady stress decrease significantly. A further increase of the soaking time led to a slight change. Peak stress and steady stress increase with increasing volume fraction of Si C particles. A sudden increase or decrease of compression velocity led to a significant increase or decrease of the steady stress. The destruction of the samples compressed at solid state temperature mainly depends on cracks parallel to compression direction. However, the destruction forms of the samples compressed at semisolid temperatures consist of cracks parallel to compression direction and partial collapse. Increasing soaking time led to an obvious change of the destruction forms. Compression velocity affects slightly the macro appearance of the sample compressed at semisolid temperatures.

详情信息展示

Compression Mechanical Behaviour of 7075 Aluminium Matrix Composite Reinforced with Nano-sized SiC Particles in Semisolid State

Jufu Jiang1,2,Gang Chen3,Ying Wang4

1. State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology2. School of Materials Science and Engineering, Harbin Institute of Technology3. School of Materials Science and Engineering, Harbin Institute of Technology at Weihai4. School of Mechatronics Engineering, Harbin Institute of Technology

摘 要:The 7075 aluminium matrix composite reinforced with nano-sized Si C particles was fabricated by ultrasonic assisted semisolid stirring method. The compression mechanical behaviour of the fabricated composite in semisolid state was investigated. The results show that the microstructure of the composite before semisolid compression consists of fine and spheroidal solid grains surrounded by liquid phase.Semisolid compression led to a nonuniform plastic deformation of solid grains. A slight plastic deformation occurred in the locations near the free surface due to the dependence of deformation on liquid flow and flow of liquid incorporating solid grains. However, obvious plastic deformation occurred in the central location and location contacting to die due to the contribution of plastic deformation of solid grains.The true stress–strain curve of the sample compressed at 500 °C consists of rapid increase of true stress and steady stage. However, rapid increase of true stress and decrease of true stress and steady stage are involved in the true stress–strain curves of the samples compressed at 550, 560, 570, 580 and 590 °C.The true stress–strain curve at 600 °C is similar to that at 500 °C. Apparent viscosity decreases with an increase of shear rate, indicating a shear thinning occurrence. When soaking time increases from 5 min to 15 min, the peak stress and steady stress decrease significantly. A further increase of the soaking time led to a slight change. Peak stress and steady stress increase with increasing volume fraction of Si C particles. A sudden increase or decrease of compression velocity led to a significant increase or decrease of the steady stress. The destruction of the samples compressed at solid state temperature mainly depends on cracks parallel to compression direction. However, the destruction forms of the samples compressed at semisolid temperatures consist of cracks parallel to compression direction and partial collapse. Increasing soaking time led to an obvious change of the destruction forms. Compression velocity affects slightly the macro appearance of the sample compressed at semisolid temperatures.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号