简介概要

简化高阶强跟踪容积卡尔曼滤波及其在组合导航中的应用

来源期刊:控制与决策2019年第10期

论文作者:郝顺义 卢航 魏翔 许明琪

文章页码:2105 - 2114

关键词:高阶容积卡尔曼滤波;强跟踪滤波;多重渐消因子;SINS/GPS组合导航;

摘    要:针对传统容积卡尔曼滤波(CKF)在面对系统模型失配和状态突变滤波精度下降的问题,将强跟踪滤波器(STF)和高阶容积卡尔曼滤波(HCKF)相结合,提出一种简化高阶强跟踪容积卡尔曼滤波(RHSTCKF)算法.该算法具有比传统CKF更高的滤波精度,并且利用滤波模型的特点,简化HCKF的计算步骤,同时在HCKF中引入多重渐消因子增强算法的自适应性和应对状态突变的能力.将所提算法应用到SINS/GPS组合导航系统中进行仿真实验,结果表明, RHSTCKF可以准确估计出突变状态的真实值,能够抑制滤波器状态异常的干扰,滤波性能明显优于HCKF,能够提高组合导航系统的自适应性和定位精度.

详情信息展示

简化高阶强跟踪容积卡尔曼滤波及其在组合导航中的应用

郝顺义,卢航,魏翔,许明琪

空军工程大学航空工程学院

摘 要:针对传统容积卡尔曼滤波(CKF)在面对系统模型失配和状态突变滤波精度下降的问题,将强跟踪滤波器(STF)和高阶容积卡尔曼滤波(HCKF)相结合,提出一种简化高阶强跟踪容积卡尔曼滤波(RHSTCKF)算法.该算法具有比传统CKF更高的滤波精度,并且利用滤波模型的特点,简化HCKF的计算步骤,同时在HCKF中引入多重渐消因子增强算法的自适应性和应对状态突变的能力.将所提算法应用到SINS/GPS组合导航系统中进行仿真实验,结果表明, RHSTCKF可以准确估计出突变状态的真实值,能够抑制滤波器状态异常的干扰,滤波性能明显优于HCKF,能够提高组合导航系统的自适应性和定位精度.

关键词:高阶容积卡尔曼滤波;强跟踪滤波;多重渐消因子;SINS/GPS组合导航;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号