网络首发时间: 2015-04-07 09:26
稀有金属 2016,40(02),172-181 DOI:10.13373/j.cnki.cjrm.2016.02.013
Nb-Ti-Al基超高温合金研究进展
史志武 张洪宇 韦华 金涛 孙晓峰 郑启
中国科学院金属研究所
摘 要:
Nb-Ti-Al基超高温合金熔点高、密度低,其综合力学性能具有潜在的优势,是未来先进航空发动机涡轮热端部件的重要备选材料。NbTi-Al基合金主要组成相为铌固溶体β相和金属间化合物δ相,β相改善合金室温塑性,δ相提供优良的高温强度和较低的蠕变速率。近年来,Nb-Ti-Al合金体系相图不断完善,β→δ相变以及β相有序化转变获得了广泛的研究。分析了Nb-Ti-Al合金的3种主要制备方法:电弧熔炼铸锭、粉末冶金和激光成形技术及工艺对组织和力学性能的影响。热等静压、热压烧结等先进粉末冶金技术适用于熔点高、反应活性强的Nb-Ti-Al基合金制备。激光成形技术应用于制备铌基超高温合金空心叶片等复杂结构部件,具有巨大的潜力。为提高Nb-Ti-Al基合金抗氧化性,可综合利用合金化防护、第二相防护、涂层防护等技术。随δ相含量增加,合金高温强度提高,而室温断裂韧性则降低,因此需平衡合金高低温力学性能,引入弥散强化。进一步优化合金体系,推进激光成形等方法的应用和改进抗氧化涂层,是Nb-Ti-Al合金的重要发展方向。
关键词:
Nb-Ti-Al基超高温合金;组织结构;相变;制备工艺;力学性能;
中图分类号: TG132.3
作者简介:史志武(1988-),男,江苏徐州人,博士研究生,研究方向:铌基高温合金;E-mail:zwshi10s@imr.ac.cn;;郑启,研究员;电话:024-23971837;E-mail:qzheng@imr.ac.cn;
收稿日期:2014-09-29
基金:国家科技部重点基础研究发展计划项目(2010CB631206);国家自然科学基金项目(51371173)资助;
Progress in Investigation of Nb-Ti-Al Based Ultrahigh-Temperature Alloys
Shi Zhiwu Zhang Hongyu Wei Hua Jin Tao Sun Xiaofeng Zheng Qi
Institute of Metal Research,Chinese Academy of Sciences
Abstract:
Nb-Ti-Al based ultrahigh-temperature alloys are significant candidate materials for manufacturing hot-section components of advanced aero turbine engines,due to high melting point,low density and potential advantages in comprehensive mechanical properties. Nb-Ti-Al based alloys mainly consist of solid solution β phase and intermetallic δ phase. The β phase improves room-temperature ductility while the δ phase provides admirable high-temperature strength and low creep rate. In the past several years,the Nb-Ti-Al phase diagrams were modified gradually,and β→δ phase transformation and ordering transformation of β phase received much attention. Three main preparation methods,arc melting,powder metallurgy and laser forming process,and their influences on the microstructure and mechanical properties of Nb-Ti-Al alloys were analyzed. Advanced powder metallurgy techniques such as hot isostatic pressing and hot pressed sintering were suitable for manufacturing Nb-Ti-Al alloys,which were characterized by high melting point and high reactivity. Laser forming had large potential in manufacturing niobium based ultrahigh-temperature hollow blades and other sophisticated structural components. To improve the oxidation resistance,alloying protection,the second phase protection and coating protection should be utilized comprehensively. As the proportion of δ phase increased,the high-temperature strength increased while the room-temperature fracture toughness decreased,thus the high and low temperature mechanical properties should be balanced,and the dispersion strengthening should be investigated. Optimizing the alloy system,promoting the applications laser forming and developing oxidation resistant coating were key developing orientations of Nb-Ti-Al based alloys.
Keyword:
Nb-Ti-Al based ultrahigh-temperature alloy; microstructure; phase transformation; forming processing; mechanical properties;
Received: 2014-09-29
随着航空发动机技术的发展,涡轮工作温度在不断提高,目前先进航空发动机的涡轮工作温度已达1850 K。即使在复杂的冷却技术支撑下,涡轮叶片的表面温度也已达到甚至超过1425 K[1],接近现用镍基高温合金熔点的85% 极限温度,因而研发具有更高承温能力的涡轮叶片材料成为先进发动机发展的技术关键。为此目的,目前材料研究者重点从4 个方向探索新型高温结构材料[2],即新型结构陶瓷、金属间化合物、难熔金属和复合材料。其中难熔金属材料以其独具的良好综合力学性能,始终受到更多的关注。特别是难熔金属铌具有较低密度( 8. 57 g·cm- 3) 、高熔点( 2741 K) 、高强度、高塑性、低蒸汽压等特性,且能同时固溶多种合金强化元素,作为高温结构材料表现出优良的应用潜力,获得材料研究者和发动机设计人员的广泛关注[3,4,5]。
根据强化相及强化方式的不同,目前在研的铌基超高温合金基本可以分为Nb-Si[4,6,7,8,9,10,11]基、NbTi-Al[12,13,14]基和Nb-W-Mo[15,16,17]基等。铌基合金中主要金属间化合物相的晶体结构和物理性质见表1[18,19]。Nb-Ti-Al基合金主要组成相为铌基固溶体( β 相) 和Nb-Al金属间化合物Nb3Al ( δ 相) 沉淀相。具有bcc结构的 β 固溶体可使裂纹尖端钝化,促使裂纹分岔、桥连,以此改善合金室温韧性[20];δ 相具有优良的高温强度和较低的蠕变速率,是Nb-Ti-Al基合金的主要强化相; 体系中添加Ti可增加 β 固溶体含量,降低材料的密度,尤其可以改善合金的抗氧化能力和力学性能。故Nb-Ti-Al基合金具有密度低、塑性和韧性高以及高温力学性能好等特点,是铌基超高温结构材料中极具发展潜力的材料。
铌基超高温合金的发展目标是应用于1200 ℃以上工作的航空发动机和工业燃气轮机涡轮叶片。自20 世纪90 年代以来,铌基合金在材料强化和抗氧化性能等方面的研究取得了许多突破性进展,铌基合金涡轮叶片的应用研究也受到广泛重视。在美国空军实验室的资助下,GE公司用熔模铸造法及定向凝固技术制备出Nb-Si涡轮叶片样件,并发展了一系列抗氧化涂层和热障涂层[3],其第一代铌基合金叶片已经在发动机上试车,计划2015年推出高压涡轮叶片[21]。在国内,北京航空航天大学与北京航空材料研究院用感应熔炼法铸造出Nb-Si合金叶片样件,为工程应用打下了基础。NbTi-Al基合金及其工艺有待进一步发展,以期获得更为优越的综合性能。
本文重点综述Nb-Ti-Al基超高温合金组织与相变、合金及其涡轮叶片制备方法等方面的研究进展,并对该合金工程化应用过程中可能面临的挑战做了概述。
1Nb-Ti-Al基超高温合金相组成与主要相变
1. 1 Nb-Ti-Al基合金相组成
1989 年Kaltenbach等[22]绘制出较完整的NbTi-Al三元系1200 ℃ 等温截面图( 图1 ( a) ) ,在此Nb-Ti-Al三元系中,尤其在富铌区域主要组成相为β,δ 和 σ 相( Nb2Al) 。随后研究者借助实验或计算的方法对该三元系组成相不断完善。Mozer等[23]通过中子衍射实验发现了O相( Ti2Al Nb) ,之后该相由Kattner和Boettinger[24]引入计算相图。化学计量比为Ti4Al3Nb的B82相由Bendersky等[25,26]发现,并在930 ~ 960 ℃的实验中得到证实,但计量比测定为Ti3Al2Nb[27]。有序 β0相区首先由Perepezko等[28]报告的相图中提出,之后的研究将其确定为β-( Ti,Nb) 固溶体的B2 有序相,并认为该相由溶混间隙机制形成[24,27]。γ1相( Nb Ti Al3) 最早由Popov等观察到,但该相的晶格参数和稳定存在温度一直存在较大争议[29]。Leonard等[13,30]实验发现了体系中一种D82结构相和一种四方结构相,并认为液相投影图中初生 β 相区范围应大幅度扩大,而 σ 和 δ 相区则应进一步缩小[12,31]。
图1( b) 为更完善的Nb-Ti-Al三元系1200 ℃相图[32],相对Kaltenbach的相图( 图1( a) ) 不仅出现相区位置调整,还增加了多个新相区,特别是在Ti-Al二元成分附近。然而,目前Nb-Ti-Al体系中的相平衡关系仍不够明了,特别是对中、低温区以及富铌区域的研究,现有研究工作更多集中在另外两侧相区[33]。补充Nb-Ti-Al系等温截面和垂直截面相图,完善其组成相及其平衡关系仍需要大量研究工作。
表1 铌基合金中金属间化合物相晶体结构及典型物理性能Table 1Crystal structure and typical physical properties of intermetallic phases in Nb based alloys 下载原图
表1 铌基合金中金属间化合物相晶体结构及典型物理性能Table 1Crystal structure and typical physical properties of intermetallic phases in Nb based alloys
图1 1200 ℃ Nb-Ti-Al三元等温相图的演变Fig. 1 Evolution of Nb-Ti-Al isothermal phase diagram at 1200 ℃
(a)Nb-Ti-Al phase diagram of Kaltenbach(1989);(b)Modified phase diagram of Hellwig(1998)HT:high temperature;RT:room temperature
Nb-Ti-Al基合金可固溶大量合金化元素,许多难熔金属元素和类金属元素强烈置换体系中元素[34]: Mo,Ta,Ru等主要取代Nb元素,Ge,Si,Sn,Sb等主要取代Al元素,而V,Cr等则同时取代Nb元素和Al元素[34,35],Hf等主要取代Ti元素[36,37]。W,Mo,Ta等元素固溶于合金中,造成强烈的固溶强化效果,大幅度提高合金的屈服强度。其中,W元素的固溶强化作用最显著,且加入W后合金组织较细小[35]。元素V可稳定B2 相,因此 δ 相体积分数与V/Al比呈近似线性关系,因而可通过控制该元素含量调整 β,δ 相体积分数[38]。Si,Ge元素稳定Nb Cr2相,降低同步剪切( synchroshear) P-N能垒,因而提高合金断裂韧性[36]。合金化研究仍然是Nb-Ti-Al基合金发展的重要方向。
1. 2 β→δ 转变
Nb-Ti-Al基合金在冷却过程中发生 δ 相从 β基体的析出转变,该转变存在两种类型: 长程扩散型转变( long-range diffusional transformation) 和块状转变( massive transformation) 。
β→δ 的长程扩散型转变较为普遍。铸态下析出的 δ 相主要为连续薄层状或细片状魏氏体组织[12],见图2( a) 。铸态合金热处理后 δ 相沉淀薄片呈束状析出。片层状 δ 相生长速率可能由Al元素体扩散控制,其生长符合线性规律。由于Al在Nb晶格中扩散速率低,而Ti也降低 δ 相生长速率,因而 δ 相生长缓慢[12]。δ 相生长速率与温度的关系见图2( b) 。
块状转变是一种无扩散的非队列型转变,原子仅跨越 δ /β 界面发生热激活迁移[39],铸态Nb-25Ti-25Al( 除特殊标注,成分均以原子分数计量)合金块状转变组织如图3 所示。Menon等[12]认为Nb-Ti-Al基合金中块状转变源于合金中Al元素的局部富集。块状转变在20% Al成分附近,尤其在较高的冷却速率下发生,对Nb-21. 5Al合金淬火通过块状转变可得到单相 δ 合金[30]。一般认为块状转变型 δ 相仅在铸态存在,在热处理后会完全消失,但Leonard等[13]在经过均匀化热处理的Nb-25Ti-25Al合金中仍发现了块状转变型 δ 相。
由于涉及到两种类型的相转变,δ/β 界面也较复杂,两相界面结构及取向关系的研究结果有所差异。一般认为长程扩散型 δ/β 界面为部分共格结构,两相界面分布大量失配位错[12,40]。Bencher等[40]得到两相间的取相关系为( 211)δ∥( 110)β,两惯习面错配度较小且具有相同的三次对称性。对块状转变,传统观点认为块状相与基体间为非共格界面[39],但最近的研究表明在一些体系中块状δ 相与基体间存在低指数取向关系[41,42]。Leonard[30]用迹线法分析 β 基体中 δ 相生长方向,认为块状相 δ /β 界面为部分共格结构,其两相取向关系是
,[212]δ∥[001]β或[001]δ∥ [111]β, 晶格错配度约为3. 5%[13,33];Marieb[43]和Jorda等[19]则并未发现两相间存在取向关系。δ /β 界面结构和取向关系汇总结果见表2,δ 相和 β 相的取向关系和界面结构还需进一步澄清。
图2 长程扩散型 δ 相析出形貌及 δ 相生长速率与时效温度关系图Fig. 2 ( a) Scanning electron microscopy ( SEM) image showing fine plate-shaped precipitates together with grain boundary δ precipitates along grain boundary in cast Nb-17. 47Al; ( b) Semilog plot of lengthening rate of δ precipitates vs. aging temperature
图3铸态Nb-25Ti-25Al合金中块状转变组织Fig.3 Microstructures of cast Nb-25Ti-25Al
(a)Optical microscopy image illustratingδcolonies inβmatrix;(b)Transmission electron microscopy(TEM)dark-field image ofδlaths separated byβphases
1. 3 β→β0有序化转变
Nb-Ti-Al基合金或Nb-Al二元合金在一定冷却条件下,其固溶体 β 相会倾向于异类原子近邻存在,即 β 相发生有序化转变,由bcc结构转变为B2 结构 β0相,如图4 所示[45]。早期用X射线衍射( XRD) 进行的合金相结构研究并没有发现该转变,而用电子衍射方法在Nb-Ti-Al基合金中证实了 β 有序化转变的存在[12,46],且有序化出现在很宽的成分范围内。Leonard等[13]进行了多种成分合金实验,XRD研究仅发现一种成分合金( Nb-35Ti-30Al) 显示出有序化 β0{ 100} 峰,而TEM分析则均观察到B2 有序结构和有序化转变产生的反相畴界。
借助原子占位通道增强显微分析( ALCHEMI)方法可分析有序化 β 相的原子占位。实验得到有序节线( OTL) 方向和不同通道条件下各元素Kα比值,结果表明[47,48]在B2 结构中Ti取代Nb,占据与Al相反的亚晶格; 而Nb的占位则依赖于合金成分,当合金中Ti含量降低时,有序化由Ti,Al之间的分离转变为Nb,Al之间的分离,在Nb-25Ti-25Al成分合金中Nb,Al原子有序化趋势最大。β 相的有序化转变温度与Ti含量密切相关[12,13],增加Ti,Al含量可提高 β 相有序化转变温度和有序化程度。在Nbx Ti-15Al合金中,当Ti含量从17% 增加到28. 3% 时,β 相的有序化转变温度从900 升高到950 ℃ 以上[46,48]。最稳定的 β 相化学计量成分为Ti2Al Nb,其有序化转变温度高达1400 ℃以上[25,26]。
表2 Nb-Ti-Al合金中 δ/β 取向关系和界面类型Table 2 Orientation relationships and types of δ / β interface in Nb-Ti-Al alloys 下载原图
表2 Nb-Ti-Al合金中 δ/β 取向关系和界面类型Table 2 Orientation relationships and types of δ / β interface in Nb-Ti-Al alloys
图4 bcc及B2 有序结构示意图Fig. 4 Schematic diagrams illustrating bcc ( a) and ordered B2( b) structure. Cαand Cβbeing sublattice compositions
另外,伴随 β→β0有序化转变生成多种 ω 相
,这些 ω 相在TEM明场像中呈斑点状分布[12,49]。在随后的时效过程中,根据合金成分,ω相转变为具有Ti4Al3Nb原子计量比的B82结构相或其他平衡相[50]。
2 Nb-Ti-Al基超高温合金制备工艺
Nb-Ti-Al基超高温合金相比传统的高温合金材料具有更高的熔点和高温反应活性,因而合金制备困难,而制造复杂形状的涡轮叶片部件则更具挑战性。Nb-Ti-Al基超高温合金主要的熔炼方法包括自耗/非自耗电弧熔炼( AM) 、等离子电弧熔炼( APM) 等,成形方法包括变形加工、粉末冶金、激光立体成形等。部分Nb-Ti-Al基合金的制备方法及其典型力学性能见表3。
2. 1 电弧熔炼和变形加工
真空电弧熔炼利用电弧放电产生的高温熔化金属材料,继而在坩埚内冷凝成锭。合金锭中初生β 相常为较粗大的树枝晶,同时也存在一些铸造缺陷。通常需要对退火后的合金进行挤压、锻造、轧制等变形加工[51,52],以细化组织、消除铸造缺陷,进而提高合金性能。
真空非自耗电弧熔炼是制备Nb-Ti-Al基超高温合金广泛采用的方法。在氩气保护下,采用该方法制备棒状[12,13,33]或纽扣状[53]试样,一般重熔4~ 6 次以保证成分均匀。真空非自耗电弧熔炼料损小,合金成分易于控制,且杂质含量低。Ye等[54]应用真空电弧熔炼方法制备了Nb-15Al-40Ti合金,合金锻造后晶粒拉长,得到片层状魏氏体O相和有序B2 基体组成的两相组织。拉伸实验中合金以塑性韧窝方式断裂,具有良好的塑性( 30% ) 和断裂韧度( 100 MPa·m1 /2) ,合金室温屈服强度达到904 MPa,且疲劳裂纹扩展抗力与IN718 合金相当。
2. 2 粉末冶金法
粉末冶金法利于消除合金成分偏析,获得更加均匀细小的组织,合金性能稳定,并且可以提高材料利用率和生产效率[62]。对于铌基难熔合金,采用粉末冶金法可获得良好的工艺性能和优良的力学性能。
表3 部分Nb-Ti-Al基合金成形方法与力学性能Table 3 Processes and mechanical properties of various Nb-Ti-Al alloys 下载原图
表3 部分Nb-Ti-Al基合金成形方法与力学性能Table 3 Processes and mechanical properties of various Nb-Ti-Al alloys
从表3 可看出,Nb-Ti-Al合金粉末冶金制品一般通过热压烧结( HP) 或热等静压烧结( HIP) 工艺制备。这两种强化烧结方式在加压的同时将粉末加热到烧结温度,经过较短时间烧结即可形成致密合金[62]。热等静压成形可以改善Nb-Ti-Al合金的致密度,提高断裂韧性和屈服强度,因而相较热压工艺更具优势[61,63]。
2. 3 激光立体成形
金属零件激光立体成形技术将快速原型与激光熔覆技术相结合,是一种制造高性能金属零件的快速成形技术。成形时采用同步送粉( 或铺粉)激光熔覆方法将金属粉末按路径在基材上填满二维形状,再逐层堆积形成三维实体零件[64]。
Brice和Dehoff等[65,66,67]探索了激光成形铌基合金的可行性,以纯元素混合粉末为原料制备的合金组织均匀。由于激光成形过程凝固速率高,所得到的合金组织细小且存在非平衡相。
Bewlay等[11,68]采用激光成形工艺制备了NbSi合金空心叶片,叶片尖端、平台区和榫头等实现成分梯度变化,以满足叶片不同区域对性能的不同要求,包括耐氧化、耐摩擦磨损( 尖端) 和抗断裂韧性( 榫头) 等性能。通过改变叶片内、外壁成分,也可降低温度梯度导致的叶片自身热膨胀差异或叶片与表面涂层的热应力。
3 Nb-Ti-Al基合金发展中面临的重要挑战
目前,Nb-Ti-Al基超高温合金仍处于探索研究阶段,该合金在航空发动机涡轮高温部件的应用还将面临抗氧化性能和高、低温力学性能平衡等关键性问题,需要特别关注。
3. 1 抗氧化性能
抗氧化性能一直是影响铌合金高温应用的障碍之一。高于400 ℃时,氧化膜易于开裂脱落,氧化呈线性规律,在600 ~ 850 ℃,更发生灾难性氧化,即铌的自粉碎现象( pesting) 。研究表明,提高Nb-Ti-Al基合金抗氧化性能的主要途径包括以下几个方面:
1. 合金化防护。可以改善铌合金抗氧化性能的元素主要有Ti,Al,Si,Cr,Hf,V,Ge以及稀土元素等[69,70]。这些合金元素或发生选择性氧化,形成具有保护性的氧化膜,或者改善氧化层的塑性,增加氧化层与基体的结合力。
2. 第二相防护。金属间化合物中氧的溶解度和扩散速率都较小[71],Nb3Al,Nb Cr2,Nb5Si3等相不仅能提高合金高温强度,还可使抗氧化性能大幅提高。
3. 涂层防护。涂层防护是改善铌合金抗氧化性能的有效途径。目前,铌合金表面高温抗氧化涂层的研究主要包括铝化物涂层、硅化物涂层、贵金属涂层、热障涂层等。
提高Nb-Ti-Al基合金的抗氧化性能需要兼顾合金的抗氧化性能和防护涂层的作用,仅依赖于抗氧化涂层防护,涂层一旦破坏,合金将遭受严重损害。另外,保证抗氧化性能的同时应兼顾合金的力学性能。
3. 2 高、低温力学性能平衡
铌基超高温合金受到关注的室温力学性能主要是断裂韧性,为了满足加工、装配和使用要求,合金的断裂韧度值需要达到20 MPa·m1 /2以上; 其主要的高温性能包括高温屈服强度、蠕变和持久性能等。δ 相对Nb-Ti-Al合金力学性能影响显著,合金高温强度随 δ 相含量增加而提高[72]( 图5) ,而合金室温断裂韧性则随 δ 相含量增加而降低,当合金中 δ 相体积分数由0 增加到7% ,断裂韧度由110 降低到17 MPa·m1/2[54]。
加入W,Mo,Ta等高熔点元素实现固溶强化,可以降低原子的自扩散速率,减小层错能,使位错难以发生交滑移或攀移,从而提升合金高温强度[35],却损害合金室温韧性。细化晶粒虽然可以提高合金的塑性、韧性和室温强度,但是却损害高温强度,特别是蠕变性能。另外,在合金中引入细小弥散颗粒如Y2O3,Ti C等实现弥散强化,可改善合金的力学性能[61,73,74,75]。
图5 Nb-Al基合金1200 ℃屈服强度与 δ 相体积分数的关系Fig. 5 Yield stress of Nb-Al based alloys at 1200 ℃ as a function of volume fraction of δ phase
4 结论
Nb-Ti-Al基超高温合金以其优异的特性成为未来航空发动机涡轮部件的重要备选材料,最近20 多年来得到了迅速发展。Nb-Ti-Al基合金的发展尚需做大量的研究工作。这些工作包括: 合金组织与相结构的研究有待更加系统和深入; 铌基合金大尺寸复杂构件的制备技术,以及与现有高温合金制造技术的相容性问题等还需要进一步研究;改善合金抗氧化性能的研究进展缓慢,先进的涂层技术也有待发展; 合金综合力学性能尚不理想,室温塑性和高温强度的平衡仍是一大挑战。进一步优化合金体系,实现合金力学性能平衡,改善合金抗氧化性能,改进抗氧化涂层,推动激光成形等方法在Nb-Ti-Al基合金制备中的应用,是今后该合金体系发展的重要研究方向。
参考文献
[1] Perepezko J H.The hotter the engine,the better[J].Science,2009,326(5956):1068.
[2] Zhao J C,Westbrook J H.Ultrahigh-temperature materials for jet engines[J].MRS Bulletin,2003,28(9):622.
[3] Bewlay B,Jackson M,Subramanian P,Zhao J.A review of very-high-temperature Nb-silicide-based composites[J].Metallurgical and Materials Transactions A,2003,34(10):2043.
[4] Bewlay B P,Jackson M R,Zhao J C,Subramanian P R,Mendiratta M G,Lewandowski J J.Ultrahigh-temperature Nb-silicide-based composites[J].MRS Bulletin,2003,28(9):646.
[5] Huang B Y,Li C G.China Materials Engineering Canon:Non-ferrous Metal Materials and Engineering[M].Beijing:Chemical Industry Press,2006.200.(黄伯云,李成功.中国材料工程大典:有色金属材料工程[M].北京:化学工业出版社,2006.200.)
[6] Sha J B.Research progress of Nb-Si ultra high temperature alloy[J].Aeronautical Manufacturing Technology,2010,(14):58.(沙江波.Nb-Si基超高温合金研究进展[J].航空制造技术,2010,(14):58.)
[7] Guo H S,Guo X P.Microstructure evolution and room temperature fracture toughness of an integrally directionally solidified Nb-Ti-Si based ultrahigh temperature alloy[J].Scripta Materialia,2011,64(7):637.
[8] Kashyap S,Tiwary C S,Chattopadhyay K.Effect of Gallium on microstructure and mechanical properties of Nb-Si eutectic alloy[J].Intermetallics,2011,19(12):1943.
[9] Sun Z,Yang Y,Guo X,Zhang C,Chang Y A.Thermodynamic modeling of the Nb-rich corner in the Nb-SiB system[J].Intermetallics,2011,19(1):26.
[10] Kashyap S,Tiwary C S,Chattopadhyay K.Microstructural and mechanical behavior study of suction cast Nb-Si binary alloys[J].Materials Science and Engineering:A,2013,583:188.
[11] Bewlay B P,Cretegny L,Young C D,Azer M N,Ritter A M.Niobium silicide-based turbine component with composition graded portions;method of modifying such turbine component[P].Europe Patent:1743729,2011.
[12] Menon E,Subramanian P,Dimiduk D.Phase transformations in Nb-Al-Ti alloys[J].Metallurgical and Materials Transactions A,1996,27(6):1647.
[13] Leonard K,Mishurda J,Vasudevan V.Examination of solidification pathways and the liquidus surface in the Nb-Ti-Al system[J].Metallurgical and Materials Transactions B,2000,31(6):1305.
[14] Wang F,Zheng X,Bai R,Cai X M,Zhang X M,Wang D H,Li Z K.Microstructure and mechanical properties of low-density Nb Ti Al VZr alloy[J].Rare Metal Materials and Engineering,2011,40(11):1972.(王峰,郑欣,白润,蔡晓梅,张小明,王东辉,李中奎.低密度Nb Ti Al VZr合金的微观组织和力学性能[J].稀有金属材料与工程,2011,40(11):1972.)
[15] Kim W Y,Tanaka H,Kim M S,Hanada S.High temperature strength and room temperature fracture toughness of Nb-Mo-W refractory alloys with and without carbide dispersoids[J].Materials Science and Engineering:A,2003,346(1-2):65.
[16] Moricca M D P,Varma S K.Isothermal oxidation behaviour of Nb-W-Cr alloys[J].Corrosion Science,2010,52(9):2964.
[17] Senkov O N,Senkova S V,Dimiduk D M,Woodward C,Miracle D B.Oxidation behavior of a refractory NbCr Mo0.5Ta0.5Ti Zr alloy[J].Journal of Materials Science,2012,47(18):6522.
[18] Gnanamoorthy R,Hanada S,Kamata K.Ductile-phase toughening and fatigue crack growth in Nb3Al base alloys[J].Scripta Materialia,1996,34(6):999.
[19] Jorda J L,Flükiger R,Muller J.A new metallurgical investigation of the niobium-aluminium system[J].Journal of the Less Common Metals,1980,75(2):227.
[20] Blazina Z,Trojko R.Structural investigations of the Nb1-xSixT2and Nb1-xAlxT2(T≡Cr,Mn,Fe,Co,Ni)systems[J].Journal of the Less-Common Metals,1986,119(2):297.
[21] Li J R,Xiong J C,Tang D Z.Advanced High Temperature Structural Materials and Technology[M].Beijing:National Defense Industry Press,2012.246.(李嘉荣,熊继春,唐定中.先进高温结构材料与技术[M].北京:国防工业出版社,2012.246.)
[22] Kaltenbach K,Gama S,Pinatti D G,Schulze K,Henig E T.A contribution to the ternary system Al-Nb-Ti[J].Zeitschrift Fur Metallkunde,1989,80:535.
[23] Mozer B,Bendersky L,Boettinger W,Rowe R G.Neutron powder diffraction study of the orthorhombic Ti2Al Nb phase[J].Scripta Metallurgica et Materialia,1990,24(12):2363.
[24] Kattner U R,Boettinger W J.Thermodynamic calculation of the ternary Ti-Al-Nb system[J].Materials Science and Engineering:A,1992,152(1-2):9.
[25] Bendersky L,Burton B,Boettinger W,Biancaniello F.Ordered omega-derivatives in a Ti-37.5Al-20Nb at.%alloy[J].Scripta Metallurgica et Materialia,1990,24(8):1541.
[26] Bendersky L A,Boettinger W J,Burton B P,Biancaniello F S,Shoemaker C B.The formation of orderedω-related phases in alloys of composition Ti4Al3Nb[J].Acta Metallurgica et Materialia,1990,38(6):931.
[27] Gama S.Ternary Alloys[M].Weinheim:VCH Verlagsgesellschaft,1993.382.
[28] Perepezko J,Chang Y,Seitzman L,Lin J,Bonda N.High temperature phase stability in the Ti-Al-Nb system[A].High Temperature Aluminides and Intermetallics[C].Warrendale,PA:The Minerals,Metals and Materials Society.1990.19.
[29] Jewett T.Comment on‘investigation on the 1000,1150 and 1400℃isothermal section of the Ti-Al-Nb system'[J].Intermetallics,1997,5(2):157.
[30] Leonard K J.Phase Equilibria and Solid State Transformations in Niobium-Rich Niobium-Titanium-Aluminum Intermetallic Alloys[D].Ohio:University of Cincinnati,1999.189.
[31] Leonard K J,Mishurda J C,Vasudevan V K.Phase equilibria at 1100℃in the Nb-Ti-Al system[J].Materials Science and Engineering:A,2002,329:282.
[32] Hellwig A,Palm M,Inden G.Phase equilibria in the Al-Nb-Ti system at high temperatures[J].Intermetallics,1998,6(2):79.
[33] Leonard K J,Vasudevan V K.Phase equilibria and solid state transformations in Nb-rich Nb-Ti-Al intermetallic alloys[J].Intermetallics,2000,8(9-11):1257.
[34] Shah D M,Anton D L.Evaluation of refractory intermetallics with A15 structure for high temperature structural applications[J].Materials Science and Engineering:A,1992,153(1-2):402.
[35] Murayama Y,Hanada S.Solid solution hardening of Nb3Al alloys containing tungsten,molybdenum and tantalum[J].Scripta Materialia,1997,37(7):949.
[36] Chan K,Davidson D.Improving the fracture toughness of constituent phases and Nb-based in-situ composites by a computational alloy design approach[J].Metallurgical and Materials Transactions A,2003,34(9):1833.
[37] Soboyejo W O,Srivatsan T S.Advanced Structural Materials:Properties,Design Optimization,and Applications[M].Boca Raton:CRC Press,2007.407.
[38] Tappin D K,Smith L S,Horspool D N,Aindow M.Microstructures and deformation behaviour in Nb/10-25at.%Al/20-40 at.%V alloys[J].Acta Materialia,1997,45(12):4923.
[39] Porter D A,Easterling K E.Chen L,Yu Y N.Phase Transformations in Metals and Alloys[M].Beijing:Higher Education Press,2011.291.(波特D A,伊斯特林K E.陈冷,余永宁译.金属和合金中的相变[M].北京:高等教育出版社,2011.291.)
[40] Bencher C D,Murugesh L,Rao K T V,Ritchie R O.Phase transformations in an in situ Nb-reinforced Nb3Al intermetallic composite[J].Intermetallics,1996,4(1):23.
[41] Mou Y,Aaronson H I.Interphase boundary structures associated with theβtoζmmassive transformation in a Ag-26 at.%Al alloy[J].Acta Metallurgica et Materialia,1994,42(6):2159.
[42] Nie J F,Muddle B C,Furuhara T,Aaronson H I.Toward the overthrow of half of a major paradigm for interfacial structure deduction,with special attention to the massive transformation in Ti-46.5 A/O Al alloy[J].Scripta Materialia,1998,39(4):637.
[43] Marieb T,Kaiser A,Nutt S,Anton D,Shah D.Hightemperature deformation of Nb-18Al[A].MRS Proceedings[C].Warrendale,PA:Materials Research Society,1991.329
[44] Rong T S,Horspool D N,Aindow M.Microstructure and mechanical behaviour of Nb-Al-V alloys with 10-25at.%Al and 20-40 at.%V--I:microstructural observations[J].Intermetallics,2002,10(1):1.
[45] Hou D H,Jones I P,Fraser H L.The ordering tie-line method for sublattice occupancy in intermetallic compounds[J].Philosophical Magazine A,1996,74(3):741.
[46] Yang S S,Vasudevan V K.Deformation structures in cold rolled Nb-(10~16)at.%Al solid solutions[J].Scripta Metallurgica et Materialia,1994,31(7):879.
[47] Shyue J,Hou D-H,Aindow M,Fraser H.Deformation mechanisms in intermetallic compounds based on Nb3Al[J].Materials Science and Engineering:A,1993,170(1-2):1.
[48] Leonard K J,Vasudevan V K.Site occupancy preferences in the B2 ordered phase in Nb-rich Nb-Ti-Al alloys[J].Materials Science and Engineering:A,2002,329-331:461.
[49] Ping D.Review onωphase in body-centered cubic metals and alloys[J].Acta Metallurgica Sinica(English Letters),2014,27(1):1.
[50] Leonard K J,Tewari R,Arya A,Mishurda J C,Dey G K,Vasudevan V K.Decomposition of theβ0phase to the P63/mcm,h P18 structure in Nb-(24-36)Ti-40Al alloys[J].Acta Materialia,2009,57(15):4440.
[51] Bai R,Zheng X,Li Z K,Wang D H,Xia M X.Effects of V and Zr additions on microstructures and mechanical properties of Nb-Ti-Al-base alloys[J].Rare Metal Materials and Engineering,2009,38(S3):5.
[52] Wang J J,Wang X H,Zhang Y,Zheng S L.Comprehensive recovery of tantalum and niobium from tantalumniobium residue[J].Chinese Journal of Rare Metals,2015,39(3):251.(汪加军,王晓辉,张盈,郑诗礼.含钽铌废渣中钽铌资源的综合回收工艺研究[J].稀有金属,2015,39(3):251.)
[53] Sikka V,Viswanathan S,Loria E.Processing and properties of Nb-Ti-base alloys[J].Journal of Materials Engineering and Performance,1993,2(4):505.
[54] Ye F,Mercer C,Soboyejo W O.An investigation of the fracture and fatigue crack growth behavior of forged damage-tolerant niobium aluminide intermetallics[J].Metallurgical and Materials Transactions A,1998,29(9):2361.
[55] Soboyejo W O,Ye F,Dipasquale J,Pine P.An investigation of the fatigue and fracture behavior of multicomponent Nb-11Al-41Ti-1.5Mo-1.5Cr intermetallic[J].Journal of Materials Science,1999,34(15):3567.
[56] Wang F,Zheng X,Bai R,Cai X M,Wang D H,Xia M X,Li Z K.Microstructure and mechanical properties of low-density Nb Ti Al Cr Si alloy[J].Rare Metals and Cemented Carbides,2011,39(1):25.(王峰,郑欣,白润,蔡晓梅,王东辉,夏明星,李中奎.低密度Nb Ti Al Cr Si合金显微组织及力学性能[J].稀有金属与硬质合金,2011,39(1):25.)
[57] Ding R,Jones I P,Jiao H.Effect of carbon on the microstructures and mechanical properties of as cast Nb-base alloy[J].Materials Science and Engineering:A,2008,485(1-2):92.
[58] Bencher C,Sakaida A,Rao K,Ritchie R.Toughening mechanisms in ductile niobium-reinforced niobium aluminide(Nb/Nb3Al)in situ composites[J].Metallurgical and Materials Transactions A,1995,26(8):2027.
[59] Murayama Y,Hanada S,Obara K.Dynamic recrystallization of Nb3Al produced from alloy powder[J].Materials Science and Engineering:A,1992,159(2):173.
[60] Rozmus M,Blicharski M,Dymek S.Scanning and transmission electron microscopy microstructure characterization of mechanically alloyed Nb-Ti-Al alloys[J].Journal of Microscopy,2006,224(1):58.
[61] Rozmus M,Blicharski M,Dymek S.Microstructure and mechanical properties of Nb15Al10Ti alloy produced by mechanical alloying and high temperature processing[J].Journal of Microscopy,2010,237(3):501.
[62] Huang P Y.Powder Metallurgy Principle[M].Beijing:Metallurgical Industry Press,1997.3.(黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997.3.)
[63] Rozmus M,Blicharski M,Dymek S.Effect of titanium on microstructure and mechanical properties of mechanically alloyed Nb-Ti-Al alloys[J].Archives of Metallurgy and Materials,2006,51(1):87.
[64] Huang W D,Lin X,Chen J.Laser Solid Forming Technology[M].Xian:Northwestern Polytechnical University Press,2007.1.(黄卫东,林鑫,陈静.激光立体成形[M].西安:西北工业大学出版社,2007.1.)
[65] Brice C A,Schwendner K I,Amancherla S,Fraser H L,Zhang X D.Characterization of laser deposited niobium and molybdenum silicides[A].MRS Proceedings[C].Warrendale,PA:Materials Research Society,2000.31.
[66] Dehoff R R,Sarosi P M,Collins P C,Fraser H L,Mills M J.Microstructures of LENSTMdeposited Nb-Si alloys[A].MRS Proceedings[C].Warrendale,PA:Materials Research Society,2005.1.
[67] Dehoff R R.Microstructure,Oxidation Behavior and Mechanical Behavior of LENS Deposited Niobium-Titanium-Silicon and Niobium-Titanium-Silicon Based Alloys[D].Ohio:The Ohio State University,2008.126.
[68] Bewlay B P,Azer M N,Cretegny L,Ritter A M,Young C D.Niobium silicide-based turbine components,and related methods for laser deposition[P].US Patent:0003416,2007.
[69] Subramanian P,Mendiratta M,Dimiduk D.The development of Nb-based advanced intermetallic alloys for structural applications[J].JOM Journal of the Minerals,Metals and Materials Society,1996,48(1):33.
[70] Subramanian P R,Mendiratta M G,Dimiduk D M,Stucke M A.Advanced intermetallic alloys-beyond gamma titanium aluminides[J].Materials Science and Engineering:A,1997,239:1.
[71] Yi D Q,Zhang X,Li J,Wu B T,Yuan J P.Oxidation behavior of Nb-Ti-Al high temperature alloys[J].Corrosion Science and Protection Technology,2005,17(2):94.(易丹青,张霞,李荐,吴伯涛,袁均平.NbTi-Al高温Nb合金氧化行为的研究[J].腐蚀科学与防护技术,2005,17(2):94.)
[72] Tabaru T,Hanada S.High temperature strength of Nb3Al-base alloys[J].Intermetallics,1998,6(7-8):735.
[73] Karpov M,Korzhov V,Prokhorov D,Vnukov V,Kiiko V,Tolstun A,Kolobov Y R,Golosov E.Structure and properties of Nb-Al alloys prepared by powder metallurgy[J].Russian Metallurgy(Metally),2013,2013(4):251.
[74] Xu N L,Wang L,Hong J Y,Jin X J.Study on performance of carbonitride precipitation and properties in Nb-Ti microalloyed steels[J].Forging&Stamping Technology,2014,39(5):121.(徐乃龙,王利,洪继要,金学军.Nb-Ti微合金碳氮化物析出行为及微合金钢性能研究[J].锻压技术,2014,39(5):121.)
[75] Zhang J,Ma Y L,Li J F,Zhu R H,Liu Q,Xiang S,Zheng Z Q.Influences of microalloying on tensile properties and microstructure of alloy Al-Cu-Li-Zr[J].Forging&Stamping Technology,2015,40(7):131.(张健,马云龙,李劲风,朱瑞华,刘晴,向胜,郑子樵.微合金化对Al-Cu-Li-Zr合金拉伸性能和微观组织的影响[J].锻压技术,2015,40(7):131.)