Recent progress on FeS2 as anodes for metal-ion batteries
来源期刊:Rare Metals2020年第11期
论文作者:Xin Li Shi-Han Qi Wen-Chao Zhang Yue-Zhan Feng Jian-Min Ma
文章页码:1239 - 1255
摘 要:The ever-growing demand for advanced battery technologies with high energy and power density,high security,prolonged cycle life,and sustainably low cost requires the development of novel electrode materials for lithium-ion batteries(LIBs),as well as the alternative electrochemical energy storage technologies of sodium-ion batteries(SIBs) and potassium-ion batteries(PIBs) for their abundant alkali metal elements resources.Among various anode materials,such as graphite,organic compounds,metal oxides,and chalcogenides,iron sulfides have attracted substantial interests for their high theoretical capacity and low price.Specifically,as a common mineral that has been already applied as electrode for primary battery,ferrous disulfide(FeS2) has been regarded as one of the promising candidate anode materials and studied widely.Unfortunately,there are some inherent problems handicapping its practical application for alkali-ion batteries,including limited ionic/electrical conductivity,the formation of soluble polysulfides,and large volume change.In the last decade,massive efforts have been devoted to solving those problems.In this review,the various synthesis strategies,the effect of morphologies and particle sizes,the energy storage mechanisms,and the electrochemical performances of FeS2 as anode for alkaliion batteries(LIBs,SIBs,and PIBs) are summarized.Furthermore,the existing challenges and prospects of the development of FeS2-based anode materials for alkali-ion batteries are presented at last.
Xin Li1,Shi-Han Qi1,Wen-Chao Zhang2,Yue-Zhan Feng3,Jian-Min Ma1
1. School of Physics and Electronics, Hunan University2. Institute for Superconducting and Electronic Materials (ISEM), School of Mechanical, Materials, Mechatronics and Biomedical Engineering, Faculty of Engineering and Information Sciences, University of Wollongong3. Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University
摘 要:The ever-growing demand for advanced battery technologies with high energy and power density,high security,prolonged cycle life,and sustainably low cost requires the development of novel electrode materials for lithium-ion batteries(LIBs),as well as the alternative electrochemical energy storage technologies of sodium-ion batteries(SIBs) and potassium-ion batteries(PIBs) for their abundant alkali metal elements resources.Among various anode materials,such as graphite,organic compounds,metal oxides,and chalcogenides,iron sulfides have attracted substantial interests for their high theoretical capacity and low price.Specifically,as a common mineral that has been already applied as electrode for primary battery,ferrous disulfide(FeS2) has been regarded as one of the promising candidate anode materials and studied widely.Unfortunately,there are some inherent problems handicapping its practical application for alkali-ion batteries,including limited ionic/electrical conductivity,the formation of soluble polysulfides,and large volume change.In the last decade,massive efforts have been devoted to solving those problems.In this review,the various synthesis strategies,the effect of morphologies and particle sizes,the energy storage mechanisms,and the electrochemical performances of FeS2 as anode for alkaliion batteries(LIBs,SIBs,and PIBs) are summarized.Furthermore,the existing challenges and prospects of the development of FeS2-based anode materials for alkali-ion batteries are presented at last.
关键词: