简介概要

Effect of annealing treatment on the anti-pulverization and anti-corrosion properties of La0.67Mg0.33Ni2.5Co0.5 hydrogen storage alloy

来源期刊:JOURNAL OF RARE EARTHS2015年第4期

论文作者:李平 张骏 翟富强 曲选辉

文章页码:417 - 424

摘    要:The La0.67Mg0.33Ni2.5Co0.5 hydrogen storage alloy was prepared by the vacuum intermediate frequency induction furnace followed by annealing treatment. The pulverization degree of both the as-cast and annealed alloy powders after gaseous hydriding and dehydriding cycle was investigated and the discovery was that annealing treatment could hardly ameliorate their anti-pulverization ability. The element content of La, Mg, Ni and Co existing in electrolyte before and after the electrochemical cycles by using ICP-AES technology was also analyzed and it showed that a large amount of La and Mg were dissolved in the electrolyte, but the amount of dissolution for La and Mg significantly declined when the alloy was annealed. The XRD analysis revealed that all the alloys consisted of two main phases AB3 and AB2 and a residual phase AB5 while annealing treatment made the AB2 phase decrease slightly. Furthermore, the anti-corrosion abilities of various elements in different phases of the as-cast and annealed alloy samples were studied by analyzing the element(La, Mg, Ni, Co) change with the corrosion time in phases AB3 and AB2 by means of EDS. It turned out that the element of La was mainly corroded out from the phase AB2 while not easily from the phase AB3. However, the element of Mg was both easily corroded out from the phases AB2 and AB3, but the corrosion was more obvious in the phase AB3. Therefore, annealing improved the anti-corrosion performances of La and Mg in the phase AB2.

详情信息展示

Effect of annealing treatment on the anti-pulverization and anti-corrosion properties of La0.67Mg0.33Ni2.5Co0.5 hydrogen storage alloy

李平1,张骏1,翟富强2,曲选辉1

1. State Key Laboratory for Advanced Metals and Materials, Institute for Advanced Materials and Technology, University of Science and Technology Beijing2. Department of Applied Physics, EETAC, Polytechnic University of Catalonia,Castelldefels 08860, Spain

摘 要:The La0.67Mg0.33Ni2.5Co0.5 hydrogen storage alloy was prepared by the vacuum intermediate frequency induction furnace followed by annealing treatment. The pulverization degree of both the as-cast and annealed alloy powders after gaseous hydriding and dehydriding cycle was investigated and the discovery was that annealing treatment could hardly ameliorate their anti-pulverization ability. The element content of La, Mg, Ni and Co existing in electrolyte before and after the electrochemical cycles by using ICP-AES technology was also analyzed and it showed that a large amount of La and Mg were dissolved in the electrolyte, but the amount of dissolution for La and Mg significantly declined when the alloy was annealed. The XRD analysis revealed that all the alloys consisted of two main phases AB3 and AB2 and a residual phase AB5 while annealing treatment made the AB2 phase decrease slightly. Furthermore, the anti-corrosion abilities of various elements in different phases of the as-cast and annealed alloy samples were studied by analyzing the element(La, Mg, Ni, Co) change with the corrosion time in phases AB3 and AB2 by means of EDS. It turned out that the element of La was mainly corroded out from the phase AB2 while not easily from the phase AB3. However, the element of Mg was both easily corroded out from the phases AB2 and AB3, but the corrosion was more obvious in the phase AB3. Therefore, annealing improved the anti-corrosion performances of La and Mg in the phase AB2.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号