简介概要

一种基于小波包变换和监督NPE的滚动轴承故障诊断方法

来源期刊:机械设计与制造2020年第3期

论文作者:董飞 俞啸 丁恩杰 吴守鹏

文章页码:29 - 33

关键词:故障诊断;敏感特征;小波包变换;朴素贝叶斯;K近邻;

摘    要:为提高滚动轴承故障诊断的性能,结合故障敏感特征的选择,提出了一种基于小波包变换(WPT)和监督NPE的滚动轴承故障诊断模型。首先,WPT对原始振动信号进行处理,利用终端节点的单支重构信号得到多域统计特征,构成原始特征集。然后,为减少特征集中的冗余信息和干扰特征,提出一种基于朴素贝叶斯的故障敏感特征选择方法(FSNB)。为了进一步降低冗余信息和运算复杂度,提出一种基于类别标签的监督邻域保持嵌入(SNPEL)方法,实现对高维特征集的低维表示。最后,利用K近邻(KNN)算法实现滚动轴承的故障诊断。采用12种轴承故障数据来验证提出的故障诊断模型的性能,结果表明,提出的模型可以实现较高的故障诊断准确度和较好的适应性。

详情信息展示

一种基于小波包变换和监督NPE的滚动轴承故障诊断方法

董飞1,2,俞啸1,2,3,丁恩杰1,2,吴守鹏1,2

1. 中国矿业大学信息与控制工程学院2. 中国矿业大学物联网(感知矿山)研究中心3. 徐州医科大学医学信息学院

摘 要:为提高滚动轴承故障诊断的性能,结合故障敏感特征的选择,提出了一种基于小波包变换(WPT)和监督NPE的滚动轴承故障诊断模型。首先,WPT对原始振动信号进行处理,利用终端节点的单支重构信号得到多域统计特征,构成原始特征集。然后,为减少特征集中的冗余信息和干扰特征,提出一种基于朴素贝叶斯的故障敏感特征选择方法(FSNB)。为了进一步降低冗余信息和运算复杂度,提出一种基于类别标签的监督邻域保持嵌入(SNPEL)方法,实现对高维特征集的低维表示。最后,利用K近邻(KNN)算法实现滚动轴承的故障诊断。采用12种轴承故障数据来验证提出的故障诊断模型的性能,结果表明,提出的模型可以实现较高的故障诊断准确度和较好的适应性。

关键词:故障诊断;敏感特征;小波包变换;朴素贝叶斯;K近邻;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号