简介概要

基于大数据技术的烧结全产线质量智能控制系统

来源期刊:钢铁2018年第7期

论文作者:吕庆 刘颂 刘小杰 毕中心 李建鹏

文章页码:1 - 9

关键词:铁矿粉烧结;大数据技术;机器学习;全产线;烧结终点预报;

摘    要:通过部署大数据采集平台,运用高效的分布式信息传输技术,完成海量烧结生产数据的采集和汇总,建立烧结全产线数据仓库;通过融合工艺知识和大数据挖掘技术,提取原料性能、配矿理论、过程工艺参数、产质量指标、生产成本等参数间的潜在规律;以数理统计和机器学习算法为核心,深入研究基于大数据技术的烧结全产线质量智能控制系统;通过决策树和最优化等方法,建立完善的决策体系。基于梯度提升树算法初步建立了烧结终点预报模型,模型预测命中率达99%以上,与以往建立的烧结终点预报模型相比,模型预报命中率和稳定性进一步提升。研究成果将促进烧结生产的创新、自动化和智能化发展,稳定控制烧结矿的产质量指标,降低生产成本,具有广泛的应用价值。

详情信息展示

基于大数据技术的烧结全产线质量智能控制系统

吕庆1,2,刘颂1,2,刘小杰1,2,毕中心3,李建鹏1,2

1. 华北理工大学冶金与能源学院2. 教育部现代冶金技术重点实验室3. 承德钢铁集团有限公司技术中心

摘 要:通过部署大数据采集平台,运用高效的分布式信息传输技术,完成海量烧结生产数据的采集和汇总,建立烧结全产线数据仓库;通过融合工艺知识和大数据挖掘技术,提取原料性能、配矿理论、过程工艺参数、产质量指标、生产成本等参数间的潜在规律;以数理统计和机器学习算法为核心,深入研究基于大数据技术的烧结全产线质量智能控制系统;通过决策树和最优化等方法,建立完善的决策体系。基于梯度提升树算法初步建立了烧结终点预报模型,模型预测命中率达99%以上,与以往建立的烧结终点预报模型相比,模型预报命中率和稳定性进一步提升。研究成果将促进烧结生产的创新、自动化和智能化发展,稳定控制烧结矿的产质量指标,降低生产成本,具有广泛的应用价值。

关键词:铁矿粉烧结;大数据技术;机器学习;全产线;烧结终点预报;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号