Magnetostrictive Flexible Thin Film Structure for Micro Devices
来源期刊:Journal of Rare Earths2007年第S1期
论文作者:Heung-Shik Lee Chongdu Cho
文章页码:182 - 185
摘 要:Polyimide (Kapton, Dupont Corp.) based magnetostrictive thin film structures were designed and fabricated for micro device applications. In particular the growth of films on flexible substrates was studied to allow a simple integration of the system in miniaturized magnetostrictive devices. The films were fabricated on different substrates to compare their different magnetic and structural properties. It showed much more magnetostriction and higher impact resistance results compared with traditional Si based film type actuators. In the fabrication process, amorphous TbDyFe films with thicknesses of 500 nm, 1 μm, 1.5 μm respectively, were deposited on the designed substrate by DC magnetron sputtering. During sputtering process the substrate holder was maintained at room temperature. After the sputter process, X-ray diffraction studies were also carried out to determine the film structure and thickness of the sputtered film. At last, magnetization from VSM (Vibrating Sample Magnetometer) and magnetostriction from optical cantilever method of each structure were measured to estimate the magneto-mechanical characteristics under the external magnetic field lower than 0.7 T for micro-system applications.
Heung-Shik Lee,Chongdu Cho
摘 要:Polyimide (Kapton, Dupont Corp.) based magnetostrictive thin film structures were designed and fabricated for micro device applications. In particular the growth of films on flexible substrates was studied to allow a simple integration of the system in miniaturized magnetostrictive devices. The films were fabricated on different substrates to compare their different magnetic and structural properties. It showed much more magnetostriction and higher impact resistance results compared with traditional Si based film type actuators. In the fabrication process, amorphous TbDyFe films with thicknesses of 500 nm, 1 μm, 1.5 μm respectively, were deposited on the designed substrate by DC magnetron sputtering. During sputtering process the substrate holder was maintained at room temperature. After the sputter process, X-ray diffraction studies were also carried out to determine the film structure and thickness of the sputtered film. At last, magnetization from VSM (Vibrating Sample Magnetometer) and magnetostriction from optical cantilever method of each structure were measured to estimate the magneto-mechanical characteristics under the external magnetic field lower than 0.7 T for micro-system applications.
关键词: