简介概要

Comparing the Fatigue and Corrosion Behavior of Nanograin and Coarse-Grain IF Steels

来源期刊:Acta Metallurgica Sinica2015年第3期

论文作者:A.Chabok K.Dehghani M.Ahmadi Jazani

文章页码:295 - 301

摘    要:In the present work,a nanograin layer of about 150 μm thick was formed on the surface of an interstitial-free(IF) steel via friction stir processing.Then,the fatigue and corrosion behaviors of IF steel with nanograin layer were compared with that of coarse-structure counterpart.More than threefold increase in the hardness was observed due to the formation of nanograin layer.The size of nanograms in the stir zone was within 30-150 nm.This resulted in 50%increase in the fatigue strength of nanostructured specimen.Furthermore,the fracture surfaces were characterized using field emission scanning electron microscopy and scanning electron microscopy.As for the fatigue behavior of nanograin IF steel,the fracture surface was characterized by the formation of nanospacing striations and nanodimples.Besides,the nanograin structure pronounced the passivity and exhibited higher corrosion resistance.

详情信息展示

Comparing the Fatigue and Corrosion Behavior of Nanograin and Coarse-Grain IF Steels

A.Chabok,K.Dehghani,M.Ahmadi Jazani

Mining and Metallurgical Engineering Department,Amirkabir University of Technology

摘 要:In the present work,a nanograin layer of about 150 μm thick was formed on the surface of an interstitial-free(IF) steel via friction stir processing.Then,the fatigue and corrosion behaviors of IF steel with nanograin layer were compared with that of coarse-structure counterpart.More than threefold increase in the hardness was observed due to the formation of nanograin layer.The size of nanograms in the stir zone was within 30-150 nm.This resulted in 50%increase in the fatigue strength of nanostructured specimen.Furthermore,the fracture surfaces were characterized using field emission scanning electron microscopy and scanning electron microscopy.As for the fatigue behavior of nanograin IF steel,the fracture surface was characterized by the formation of nanospacing striations and nanodimples.Besides,the nanograin structure pronounced the passivity and exhibited higher corrosion resistance.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号