简介概要

基于IDNPSO-BP神经网络的股票市场指数预测

来源期刊:东北大学学报(自然科学版)2013年第6期

论文作者:刘家和 金秀 陈露艳 苑莹

文章页码:901 - 904

关键词:神经网络;动态邻居;粒子群算法;市场指数;预测;

摘    要:针对动态邻居粒子群算法的局限性,引入新的动态邻居拓扑结构,动态调整粒子群算法参数设置,提出改进的动态邻居粒子群算法(IDNPSO).为了提高BP神经网络模型的预测准确性,提出一种基于改进动态邻居粒子群算法的BP神经网络模型(IDNPSO-BP神经网络).利用IDNPSO-BP神经网络和GA-BP神经网络对上证指数、深证指数进行预测,结果表明IDNPSO-BP神经网络的预测误差优于GA-BP神经网络,具有股票市场指数预测能力.

详情信息展示

基于IDNPSO-BP神经网络的股票市场指数预测

刘家和1,金秀1,陈露艳2,苑莹1

1. 东北大学工商管理学院2. 中国人民大学财政金融学院

摘 要:针对动态邻居粒子群算法的局限性,引入新的动态邻居拓扑结构,动态调整粒子群算法参数设置,提出改进的动态邻居粒子群算法(IDNPSO).为了提高BP神经网络模型的预测准确性,提出一种基于改进动态邻居粒子群算法的BP神经网络模型(IDNPSO-BP神经网络).利用IDNPSO-BP神经网络和GA-BP神经网络对上证指数、深证指数进行预测,结果表明IDNPSO-BP神经网络的预测误差优于GA-BP神经网络,具有股票市场指数预测能力.

关键词:神经网络;动态邻居;粒子群算法;市场指数;预测;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号