简介概要

Effect of Cooling Rate on the Microstructure of ZA48 Alloy

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2010年第5期

论文作者:王杰芳 谢敬佩

文章页码:811 - 813

摘    要:The effect of cooling rate on the microstructure of ZA48 alloy was investigated. The alloy was prepared using a relatively simple technique, i e, rapid cooling of the melt in a steel wedge mould. The dependence of microstructure on the cooling rate (about 40 to 103 K/s) was determined by the secondary dendrite arm space size measurement, optical microscopy(OM), and transmission electron microscopy (TEM). It is found that the matrix structure over a large cooling rate is composed of α-Al dendrite and eutectoid (α+η), the size of α-Al dendrite decreases with increasing cooling rate. The relationship between the cooling rate and the secondary dendrite arm space size has been established. TEM shows that a large number of small and dispersed precipitations can be seen in the primary α phase of tip region. Electron diffraction pattern shows that the precipitate phase is Zn3Mg2 phase.

详情信息展示

Effect of Cooling Rate on the Microstructure of ZA48 Alloy

王杰芳1,谢敬佩2

1. School of Physics and Engineering, The Key Laboratory of Material Physics of the Ministry of Education of China, Zhengzhou University2. The College of Materials Science & Engineering, Henan University of Science and Technology

摘 要:The effect of cooling rate on the microstructure of ZA48 alloy was investigated. The alloy was prepared using a relatively simple technique, i e, rapid cooling of the melt in a steel wedge mould. The dependence of microstructure on the cooling rate (about 40 to 103 K/s) was determined by the secondary dendrite arm space size measurement, optical microscopy(OM), and transmission electron microscopy (TEM). It is found that the matrix structure over a large cooling rate is composed of α-Al dendrite and eutectoid (α+η), the size of α-Al dendrite decreases with increasing cooling rate. The relationship between the cooling rate and the secondary dendrite arm space size has been established. TEM shows that a large number of small and dispersed precipitations can be seen in the primary α phase of tip region. Electron diffraction pattern shows that the precipitate phase is Zn3Mg2 phase.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号