简介概要

Influences of 2.5wt%Mn addition on the microstructure and mechanical properties of Cu-Al-Ni shape memory alloys

来源期刊:International Journal of Minerals Metallurgy and Materials2010年第2期

论文作者:Ugur Sari

文章页码:192 - 198

摘    要:<正>The influences of 2.5wt%Mn addition on the microstructure and mechanical properties of the Cu-11.9wt%Al-3.8wt%Ni shape memory alloy(SMA) were studied by means of scanning electron microscopy(SEM),transmission electron microscopy(TEM),and differential scanning calorimeter(DSC).The experimental results show that Mn addition influences considerably the austenite-martensite transformation temperatures and the kind of martensite in the Cu-Al-Ni alloy.The martensitic transformation changes from a mixedβ1→β’1+γ’1 transformation to a singleβ1→β’1 martensite transformation together with a decrease in transformation temperatures.In addition,the observations reveal that the grain size of the Cu-Al-Ni alloy can be controlled with the addition of 2.5wt%Mn and thus its mechanical properties can be enhanced.The Cu-Al-Ni-Mn alloy exhibits better mechanical properties with the high ultimate compression strength and ductility of 952 MPa and 15%,respectively.These improvements are attributed to a decrease in grain size.However,the hardness decreases from Hv 230 to Hv 140 with the Mn addition.

详情信息展示

Influences of 2.5wt%Mn addition on the microstructure and mechanical properties of Cu-Al-Ni shape memory alloys

Ugur Sari

Department of Computer Education and Instructional Technology,Faculty of Education,Kinkkale University

摘 要:<正>The influences of 2.5wt%Mn addition on the microstructure and mechanical properties of the Cu-11.9wt%Al-3.8wt%Ni shape memory alloy(SMA) were studied by means of scanning electron microscopy(SEM),transmission electron microscopy(TEM),and differential scanning calorimeter(DSC).The experimental results show that Mn addition influences considerably the austenite-martensite transformation temperatures and the kind of martensite in the Cu-Al-Ni alloy.The martensitic transformation changes from a mixedβ1→β’1+γ’1 transformation to a singleβ1→β’1 martensite transformation together with a decrease in transformation temperatures.In addition,the observations reveal that the grain size of the Cu-Al-Ni alloy can be controlled with the addition of 2.5wt%Mn and thus its mechanical properties can be enhanced.The Cu-Al-Ni-Mn alloy exhibits better mechanical properties with the high ultimate compression strength and ductility of 952 MPa and 15%,respectively.These improvements are attributed to a decrease in grain size.However,the hardness decreases from Hv 230 to Hv 140 with the Mn addition.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号