简介概要

Hierarchical Micropore/Nanorod Apatite Hybrids In-Situ Grown from 3-D Printed Macroporous Ti6Al4V Implants with Improved Bioactivity and Osseointegration

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2017年第2期

论文作者:Peng Xiu Zhaojun Jia Jia Lv Chuan Yin Hong Cai Chunli Song Huijie Leng Yufeng Zheng Zhongjun Liu Yan Cheng

文章页码:179 - 186

摘    要:The advent of three-dimensional(3-D) printed technique provides great possibility in the fabrication of customized porous titanium(Ti) implant. However, the bioinert property of the printed Ti poses an outstanding problem. Hybrid micro-arc oxidation and hydrothermal(MAO–HT) treatment on porous metals is able to produce multi-scaled hierarchical orthopedic implant, showing great potential for surface modification of 3-D printed implant. In this study, cylindrical porous Ti6Al4V(Ti64) scaffolds with pore size of 640 μm, porosity of 73% were 3-D printed by electron beam melting process, and their surfaces were left untreated or treated by a combined MAO–HT procedure. In vitro bioactivity was tested by immersion in simulated body fluid for different time points. Then, 12 scaffolds in each group were implanted into the femoral condyles of New Zealand rabbit for 8 weeks. Osseointegration was evaluated by qualitative and quantitative histological analysis, and the bone ingrowth features were probed by sequential fluorescent labeling at 3 and 6 weeks post-surgery. Following the MAO–HT treatment, the porous Ti64 scaffold was endowed with multi-scaled micro/nano-topographies and high amounts of Ca P on its surface.The treated scaffold exhibited drastically enhanced apatite forming ability compared with the untreated one. In vivo test revealed significantly that a higher amount of bone ingrowth and bone implant contact at the treated scaffold. The 2 types of scaffolds had different patterns of bone ingrowth: the treated scaffold exhibited a pattern of contact osteogenesis, by which bone formed directly on the treated implant surface, whereas bone formed distal to the implant surface of the untreated scaffold. MAO–HT treatment can significantly enhance the in vitro apatite-inducing ability and in vivo osseointegration capacity of 3-D porous Ti64 scaffold and may provide as a viable approach for the fabrication of bioactive 3-D printed porous implant for orthopedic applications.

详情信息展示

Hierarchical Micropore/Nanorod Apatite Hybrids In-Situ Grown from 3-D Printed Macroporous Ti6Al4V Implants with Improved Bioactivity and Osseointegration

Peng Xiu1,2,Zhaojun Jia3,Jia Lv1,2,Chuan Yin1,2,Hong Cai1,2,Chunli Song1,2,Huijie Leng1,2,Yufeng Zheng3,4,Zhongjun Liu1,2,Yan Cheng3

1. Department of Orthopedics,Peking University Third Hospital2. Beijing Key Laboratory of Spinal Diseases3. Center for Biomedical Materials and Tissue Engineering,Academy for Advanced Interdisciplinary Studies,Peking University4. Department of Materials Science and Engineering,College of Engineering,Peking University

摘 要:The advent of three-dimensional(3-D) printed technique provides great possibility in the fabrication of customized porous titanium(Ti) implant. However, the bioinert property of the printed Ti poses an outstanding problem. Hybrid micro-arc oxidation and hydrothermal(MAO–HT) treatment on porous metals is able to produce multi-scaled hierarchical orthopedic implant, showing great potential for surface modification of 3-D printed implant. In this study, cylindrical porous Ti6Al4V(Ti64) scaffolds with pore size of 640 μm, porosity of 73% were 3-D printed by electron beam melting process, and their surfaces were left untreated or treated by a combined MAO–HT procedure. In vitro bioactivity was tested by immersion in simulated body fluid for different time points. Then, 12 scaffolds in each group were implanted into the femoral condyles of New Zealand rabbit for 8 weeks. Osseointegration was evaluated by qualitative and quantitative histological analysis, and the bone ingrowth features were probed by sequential fluorescent labeling at 3 and 6 weeks post-surgery. Following the MAO–HT treatment, the porous Ti64 scaffold was endowed with multi-scaled micro/nano-topographies and high amounts of Ca P on its surface.The treated scaffold exhibited drastically enhanced apatite forming ability compared with the untreated one. In vivo test revealed significantly that a higher amount of bone ingrowth and bone implant contact at the treated scaffold. The 2 types of scaffolds had different patterns of bone ingrowth: the treated scaffold exhibited a pattern of contact osteogenesis, by which bone formed directly on the treated implant surface, whereas bone formed distal to the implant surface of the untreated scaffold. MAO–HT treatment can significantly enhance the in vitro apatite-inducing ability and in vivo osseointegration capacity of 3-D porous Ti64 scaffold and may provide as a viable approach for the fabrication of bioactive 3-D printed porous implant for orthopedic applications.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号