基于强化学习的适应性微粒群算法
来源期刊:控制与决策2011年第1期
论文作者:邢长明 刘方爱
文章页码:54 - 122
关键词:微粒群算法;惯性权重;自适应;强化学习;
摘 要:惯性权重是微粒群算法(PSO)的重要参数,它可以平衡算法的全局和局部搜索能力的关系,改善算法的性能.对此,提出一种基于强化学习的适应性微粒群算法(RPSO).首先将不同惯性权重调整策略视为粒子的行动集合;然后通过计算Q函数值,考察粒子多步进化的效果;进而选择粒子最优进化策略,动态调整惯性权重,以增强算法寻找全局最优的能力.对几种经典函数的测试结果表明,RPSO能够获得良好的性能,特别是对多峰函数效果更加明显.
邢长明,刘方爱
山东师范大学信息科学与工程学院
摘 要:惯性权重是微粒群算法(PSO)的重要参数,它可以平衡算法的全局和局部搜索能力的关系,改善算法的性能.对此,提出一种基于强化学习的适应性微粒群算法(RPSO).首先将不同惯性权重调整策略视为粒子的行动集合;然后通过计算Q函数值,考察粒子多步进化的效果;进而选择粒子最优进化策略,动态调整惯性权重,以增强算法寻找全局最优的能力.对几种经典函数的测试结果表明,RPSO能够获得良好的性能,特别是对多峰函数效果更加明显.
关键词:微粒群算法;惯性权重;自适应;强化学习;