Carbothermal synthesis of Si3N4 powders using a combustion synthesis precursor
来源期刊:International Journal of Minerals Metallurgy and Materials2013年第1期
论文作者:Ai-min Chu Ming-li Qin Bao-rui Jia Hui-feng Lu Xuan-hui Qu
文章页码:76 - 81
摘 要:Si3N4 powders were synthesized by a carbothermal reduction method using a SiO2 + C combustion synthesis precur- sor derived from a mixed solution consisting of silicic acid (Si source), polyacrylamide (additive), nitric acid (oxidizer), urea (fuel), and glucose (C source). Scanning electron microscopy (SEM) micrographs showed that the obtained precursor exhibited a uniform mixture of SiO2 + C composed of porous blocky particles up to ~20 μm. The precursor was subsequently calcined under nitrogen at 1200-1550°C for 2 h. X-ray diffraction (XRD) analysis revealed that the initial reduction reaction started at about 1300°C, and the complete transition of SiO2 into Si3N4 was found at 1550°C. The Si3N4 powders, synthesized at 1550°C, exhibit a mixture phase of α- and β-Si3N4 and consist of mainly agglomerates of fine particles of 100-300 nm, needle-like crystals and whiskers with a diameter of about 100 nm and a length up to several micrometers, and a minor amount of irregular-shaped growths.
Ai-min Chu1,2,Ming-li Qin1,Bao-rui Jia1,Hui-feng Lu1,Xuan-hui Qu1
1. Beijing Key Laboratory for Advanced Powder Metallurgy and Particulate Materials, School of Materials Science and Engineering, University of Science and Technology Beijing2. School of Electro-mechanism Engineering, Hunan University of Science and Technology
摘 要:Si3N4 powders were synthesized by a carbothermal reduction method using a SiO2 + C combustion synthesis precur- sor derived from a mixed solution consisting of silicic acid (Si source), polyacrylamide (additive), nitric acid (oxidizer), urea (fuel), and glucose (C source). Scanning electron microscopy (SEM) micrographs showed that the obtained precursor exhibited a uniform mixture of SiO2 + C composed of porous blocky particles up to ~20 μm. The precursor was subsequently calcined under nitrogen at 1200-1550°C for 2 h. X-ray diffraction (XRD) analysis revealed that the initial reduction reaction started at about 1300°C, and the complete transition of SiO2 into Si3N4 was found at 1550°C. The Si3N4 powders, synthesized at 1550°C, exhibit a mixture phase of α- and β-Si3N4 and consist of mainly agglomerates of fine particles of 100-300 nm, needle-like crystals and whiskers with a diameter of about 100 nm and a length up to several micrometers, and a minor amount of irregular-shaped growths.
关键词: