基于RS-GWO-GRNN的充填管道失效风险研究
来源期刊:有色金属2019年第6期
论文作者:骆正山 王文辉 张新生
文章页码:76 - 83
关键词:粗糙集(RS)理论;灰狼优化(GWO)算法;广义回归神经网络(GRNN);充填管道;失效风险;
摘 要:为克服充填管道失效风险评判指标间的复杂性,传统方法预测精度低及适用性差等缺陷,提出基于粗糙集(RS)和灰狼优化(GWO)算法融合广义回归神经网络(GRNN)的充填管道失效风险评价模型。选取10项风险评价指标,通过属性约简提取影响充填管道失效的主要风险因素,运用GWO优化GRNN的参数,构建预测模型,以国内某具体矿山充填系统为例进行实证研究,结果表明:与其它预测模型相比,RS-GWO-GRNN模型的预测精度更高,泛化能力更强,为充填管道失效风险研究提供了新思路,具有较好的借鉴意义。
骆正山,王文辉,张新生
摘 要:为克服充填管道失效风险评判指标间的复杂性,传统方法预测精度低及适用性差等缺陷,提出基于粗糙集(RS)和灰狼优化(GWO)算法融合广义回归神经网络(GRNN)的充填管道失效风险评价模型。选取10项风险评价指标,通过属性约简提取影响充填管道失效的主要风险因素,运用GWO优化GRNN的参数,构建预测模型,以国内某具体矿山充填系统为例进行实证研究,结果表明:与其它预测模型相比,RS-GWO-GRNN模型的预测精度更高,泛化能力更强,为充填管道失效风险研究提供了新思路,具有较好的借鉴意义。
关键词:粗糙集(RS)理论;灰狼优化(GWO)算法;广义回归神经网络(GRNN);充填管道;失效风险;