基于改进的本征时间尺度分解和基本尺度熵的齿轮故障诊断方法

来源期刊:中南大学学报(自然科学版)2015年第3期

论文作者:钟先友 赵春华 陈保家 曾良才

文章页码:870 - 878

关键词:本征时间尺度分解;基本尺度熵;支持向量机;样本熵

Key words:intrinsic time-scale decomposition; base-scale entropy; support vector machine; sample entropy

摘    要:针对齿轮振动信号的非线性、非平稳特征和难以获取大量故障样本的问题,提出改进的本征时间尺度分解方法(IITD)和基本尺度熵(BE)的齿轮故障诊断方法。采用IITD方法对齿轮振动信号进行分解,再对得到的前4个有意义的合理旋转(PR)分量计算其基本尺度熵,并将熵值作为特征向量输入支持向量机分类器,从而实现齿轮故障类别的诊断。实验结果表明,该方法能有效地实现齿轮故障类型的诊断。

Abstract: Considering the nonlinear, non-stationary characteristics of a gear vibration signal,and difficulty in obtaining a large number of failures samples, a gear fault diagnosis method combining improved intrinsic time-scale decomposition (IITD) and base-scale entropy was proposed. Firstly, IITD method was applied to decompose the vibration signal into a finite number of proper rotation (PR) components, then the first four proper rotation components were selected to calculate entropy, and finally the entropy values as feature vectors were input to a SVM-based classifier to distinguish the gear fault types. The results show that the proposed method can diagnose the fault categories effectively.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号