基于UKF和神经网络的一类非线性系统状态估计
来源期刊:控制与决策2014年第11期
论文作者:刘济 高丽君
文章页码:2076 - 2080
关键词:模型未知;神经网络;不敏卡尔曼滤波;
摘 要:在模型未知的情况下,估计过程的重要变量尤为重要.鉴于此,采用不敏卡尔曼滤波(UKF)与神经网络相结合的方法,解决一类未知模型非线性系统的状态估计问题.采用动态神经网络对非线性系统进行建模,利用UKF对状态和权值进行同时更新,从而达到神经网络逼近真实模型,估计值跟随真实值的目的.通过两个仿真实例表明了所提出的方法具有良好的估计效果,并且状态在输出中的比重越大,其估计精度越高.
刘济,高丽君
华东理工大学信息科学与工程学院
摘 要:在模型未知的情况下,估计过程的重要变量尤为重要.鉴于此,采用不敏卡尔曼滤波(UKF)与神经网络相结合的方法,解决一类未知模型非线性系统的状态估计问题.采用动态神经网络对非线性系统进行建模,利用UKF对状态和权值进行同时更新,从而达到神经网络逼近真实模型,估计值跟随真实值的目的.通过两个仿真实例表明了所提出的方法具有良好的估计效果,并且状态在输出中的比重越大,其估计精度越高.
关键词:模型未知;神经网络;不敏卡尔曼滤波;