基于压缩感知的语音盲稀疏重构算法及其去噪应用

来源期刊:中南大学学报(自然科学版)2015年第1期

论文作者:李凤莲 畅江 张雪英 宋磊 田玉楚

文章页码:164 - 171

关键词:压缩感知;重构算法;语音去噪;匹配追踪算法

Key words:compressed sensing; reconstruction algorithms; speech de-noising; matching pursuit algorithm

摘    要:根据传统的正交匹配追踪(OMP)算法和稀疏度自适应匹配追踪(SAMP)算法各自的缺陷,提出可以在盲稀疏状态下重构带噪语音的多匹配正交追踪(MMOP)算法。该算法采用同时匹配多个原子以及同步增大和缩小原子集的办法来解决SAMP算法中原子的过匹配和欠匹配现象,此外,还提出一种新的去噪思想和设置初始步长方法,并且采用分阶段步长来重构原始语音信号。研究结果表明:本文算法不仅修正SAMP算法的过匹配和欠匹配的现象,而且还具有匹配速度快、迭代次数少的优点,同时又提高语音信号在盲稀疏状态下的重构精度,此外,该算法还可以应用在噪声语音中,有较明显的去噪效果,且其重构后的语音主客观质量评价都要好于传统的OMP算法和SAMP算法。

Abstract: Considering the defects of the traditional orthogonal matching pursuit (OMP) algorithm and the sparsity adaptive matching pursuit (SAMP) algorithm, the multi-matching orthogonal pursuit (MMOP) algorithm was proposed under the condition of blind sparse with noise speech. The proposed algorithm used method of the match more than one atom to solve the over matching and less matching problems of SAMP algorithm as well as method of growing and shrinking atomic set. In addition, a new method of speech de-noising and the initial step, and the phased step was also proposed to reconstruct the original speech signal. The results show that the proposed algorithm can not only solve the SAMP algorithm problem of over matching and less matching, but also improve the matching speed and lessen the iterations number, and at the same time improve the accuracy of reconstruction. What’s more, the proposed algorithm can also be applied to the common noisy speech, with a better speech quality evaluation than the traditional OMP algorithm and SAMP algorithm.

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号