DOI: 10.11817/j.issn.1672-7207.2020.02.013
复杂地质条件区页岩气聚集差异性及其意义:以湘西北古生界为例
李智文1,郭建华1,秦明阳1,黄俨然1, 2,曹铮3
(1. 中南大学 地球科学与信息物理学院,湖南 长沙,410083;
2. 湖南科技大学 页岩气资源利用湖南省重点实验室,湖南 湘潭,411201;
3. 重庆科技学院 石油与天然气工程学院,重庆,401331)
摘要:针对湘西北地区寒武系牛蹄塘组和奥陶系五峰组—志留系龙马溪组富有机质海相页岩勘探效果巨大差异,比较复杂地质条件区聚集特征,分析差异性原因,指出未来勘探方向。研究结果表明:1) 牛蹄塘组页岩有机质质量分数w(TOC)及厚度异常高,明显比五峰组—龙马溪组的高;2) 牛蹄塘组以热水沉积作用下的硅质页岩为主,黏土矿物以伊利石为主,而五峰组—龙马溪组以生物作用下的硅质页岩和硅质岩为主,黏土矿物主要为伊/蒙混层;3) 牛蹄塘组储层中孔(孔径为2~50 nm)和小孔(孔径<2 nm)更加发育,吸附能力比五峰组—龙马溪组的强;4) 牛蹄塘组热演化程度高,主要生气期与燕山—喜山期构造运动时期相一致;5) 牛蹄塘组含气量低,甲烷体积分数低,残余气体积分数超过65%;而五峰组—龙马溪组含气性较好,甲烷体积分数超过90%,解吸气体积分数超过50%。产生这种差异性的原因在于:不同的沉积环境影响页岩品质,尤其是w(TOC)及厚度;牛蹄塘组顶底板条件较差,影响页岩气保存;燕山—喜山期断裂与滑脱双重作用导致牛蹄塘组含气性较差。复杂地质条件区页岩气聚集的关键因素为:沉积条件控制页岩气聚集的物质基础,保存条件控制页岩气富集程度。未来牛蹄塘组勘探应该重视寻找“外源供给型”气藏,五峰组—龙马溪组应重视残留向斜内滑脱作用形成的“甜点区”。
关键词:古生界;页岩气;聚集条件;差异性;滑脱层;外源供给型
中图分类号:TE122 文献标志码:文献标识码:A
文章编号:1672-7207(2020)02-0385-14
Differences and significance of shale gas accumulation in complex geological condition area: a case of Paleozoic in northwestern Hunan
LI Zhiwen1, GUO Jianhua1, QIN Mingyang1, HUANG Yanran1, 2, CAO Zheng3
(1. School of Geosciences and Info-Physics Engineering, Central South University, Changsha 410083, China;
2. Key Laboratory of Shale Gas Resource Utilization of Hunan Province,
Hunan University of Science and Technology, Xiangtan 411201, China;
3. School of Petroleum Engineering, Chongqing University of Science and Technology,Chongqing 401331, China)
Abstract: Organic-rich marine shales are developed in the Cambrian Niutitang Formation(∈1n) and the Ordovician Wufeng Formation—Silurian Longmaxi Formation(O3w—S1l) in the northwest of Hunan Province, but exploration results are quietly different in the complex geological condition area, the differences in shale gas accumulation condition were compared, the reasons from multiple aspects were analyzed, and the exploration direction in the future was pointed out. The results show as follows. 1) The organic matter mass fraction and thickness of ∈1n are extremely high, which are obviously superior to those of O3w—S1l. 2) The lithology of ∈1n is dominantly composed of siliceous shale, which is affected during hydrothermal sedimentary. The clay mineral is dominated by illite. However, the lithology of O3w—S1l is dominated by siliceous shale and siliceous rock, which are closely related to biological action. The clay mineral is mainly I/S(illite-montmorillonite). 3) Mesopores (2-50 nm) and micropores (<2 nm) of ∈1n are more developed, and reservoir adsorption capacity of ∈1n is stronger than that of O3w—S1l. 4) Thermal evolution of organic matter is higher and tectonic movements from Yanshan to Xishan period are consistent with the main gas generation period of ∈1n.5) ∈1n has lower content of shale gas, lower volume fraction of methane(CH4) and more than 65% of residual gas. O3w—S1l has higher volume fraction of shale gas, more than 90% of CH4 and more than 50% of residual gas. The reasons for the difference are as follows. Different sedimentary environments affect characteristics of organic-rich shale, especially w(TOC) and thickness. Bad roof and floor conditions of ∈1n affect shale gas preservation. The double actions of fracture and detachment cause the high content of ∈1n. Therefore, the key factors of shale gas accumulation in complex geological condition area are proposed, i.e., sedimentary condition controls the material basis of shale gas accumulation, and preservation condition controls the degree of shale gas enrichment. In the future, the exploration of ∈1n should be focused on the search for “exogenous type” shale gas, while the exploration of O3w-S1l should be focused on “sweet spots area” created by detachment.
Key words: Paleozoic; shale gas; accumulation condition; detachment; difference; exogenous type
加快页岩气勘探与开发是我国应对石油紧缺和能源安全的重要措施[1]。我国南方扬子地区广泛发育海相富有机质页岩,其中下寒武统牛蹄塘组和上奥陶统五峰组—下志留统龙马溪组是目前国内页岩气勘探的重点[2]。截止2017年底,四川盆地涪陵、长宁、威远等区块五峰组—龙马溪组页岩气开发取得了显著成效,年产量逾70×108 m3,成为“增储上产”的重要领域。然而,除四川威远、湖北宜昌等地区外[3-4],牛蹄塘组页岩气勘探效果整体不理想,贵州、重庆、湖南等近70%的牛蹄塘组黑色页岩中氮气体积分数一般超过90%[5]。在第二轮页岩气探矿权招标中,湘西北地区设置了保靖、花垣、龙山、桑植及永顺共5个区块,成为南方页岩气勘探重点地区之一,也是实现“页岩气发展规划(2016—2020年)” 300×108 m3年产量目标的重要接替区。目前湘西北已累计完成20余口井,在复杂地质条件下,牛蹄塘组“有岩无气”与五峰组—龙马溪组“有气无流、有流无量”的勘探成效导致页岩气勘探面临困境。受勘探程度及资料限制,前人根据露头样品针对湘西北牛蹄塘组或五峰组—龙马溪组聚集条件进行研究[6-8],部分学者的研究对象仅局限于1个区块或者1口井[9-11]。目前缺乏研究区与国内典型地区的页岩气聚集条件对比研究,也缺乏研究区古生界页岩气聚集条件差异性分析。为此,本文作者依据野外露头、岩心观察及实验测试资料,以富有机质页岩集中段为研究对象,横向对比古生界页岩气聚集地质特征,多方面探讨两者聚集条件的差异性及其原因,以便揭示复杂地质条件区页岩气富集关键因素,提出未来勘探新方向。
1 区域地质背景
湘西北地区属于上扬子板块,在震旦纪至早古生代主要表现为克拉通海相盆地。在早寒武世,研究区构造沉降加剧,达到最大海泛面,鄂中古陆的上升奠定了“北高南低”的深水陆棚格局,沉积了广泛的富有机质页岩。早奥陶世,湘西北发生“跷跷板”式构造转换,黔中、雪峰及江南隆起基本连成滇黔桂隆起带,在川中隆起的共同作用下,湘西北形成了“西北低、东南高”的闭塞、滞留深水陆棚环境,碳酸盐岩沉积速率降到最低,发育了一套富含硅质、炭质的笔石页岩。
湘西北古生界海相页岩气钻井分布及成效图如图1所示。从图1可见:除北西缘外,研究区主体属于桑植—石门复向斜,保靖—慈利断裂以东属于江南雪峰隆起;燕山—喜山期多期次压扭性构造运动产生了强烈的冲断、褶皱及抬升剥蚀,形成如今NNE或NE走向为主的“基底卷入式”褶皱和断裂体系,并影响页岩气保存和富集。
2 聚集特征比较
依据多年来钻井资料分析,认为两套页岩气在有机质质量分数、岩石学特征、储层特征、热演化程度及含气性等方面存在明显差异。
2.1 有机质质量分数
丰富的有机质是页岩气聚集“源控”或“成烃控储”的物质基础[12-13]。湘西北牛蹄塘组页岩厚度及有机质丰度w(TOC)异常高,达到全国之冠,如常页1井富有机质页岩厚度达130 m,TOV质量分数w(TOC)最高可达17.6%,平均为9.8%[2,9]。四川盆地及周缘五峰组—龙马溪组笔石带特征(焦页1井)见图2,南方古生界海相页岩参数对比见表1。从图2和表1可见:类似于焦页1井,湘西北地区五峰组—龙马溪组页岩w(TOC)自下而上逐渐降低,富有机质页岩主要发育于五峰组WF2—WF3段及龙马溪组LM1—LM4段[14];受湘鄂西水下隆起影响,湘西北地区缺乏部分笔石页岩段,龙山红岩溪剖面五峰组与龙马溪组之间夹古风化壳,富有机质页岩品质不及四川盆地,厚度仅20~30 m,w(TOC)一般为2%~4%。
表1 南方古生界海相页岩参数对比
Table 1 Parameters comparison of Paleozoic marine shale in South China
图1 湘西北古生界海相页岩气钻井分布及成效图
Fig. 1 Location and result map of marine shale gas exploration in the Paleozoic in Northwestern Hunan
2.2 岩石学特征
基于野外露头和岩心资料,结合薄片观察及X线衍射矿物分析,两套页岩的岩石学特征存在明显差异。
1) 湘西北牛蹄塘组以硅质页岩为主,钙质质量分数一般为10%~20%,最高可达40%以上;五峰组—龙马溪组以硅质页岩、硅质岩为主,钙质质量分数一般低于10%,如表1所示。
2) 牛蹄塘组富含重晶石、磷结核、石煤等,并且富集Zn,Cr,As,Se,Ba,V和U等微量元素, w(U)/w(Th)高可达5.71,稀土元素存在Eu正异常与Ce负异常,w(TOC)与多种异常金属元素质量分数呈很好的线性关系,反映了热水沉积的特点[15-16];在五峰组—龙马溪组岩心中观察到大量笔石化石,薄片中有大量海绵骨针、放射虫和有孔虫等微体化石,同时, w(Si)/[w(Si)+w(Al)+w(Fe)]平均为0.90;硅质质量分数与w(TOC)或笔石多样性呈正相关性,反映了硅质主要来源于生物作用[12,17]。
3) 牛蹄塘组黏土矿物成分单一,伊利石平均质量分数为80%~90%,处于晚成岩C亚期;而五峰组—龙马溪组黏土矿物成分复杂,伊/蒙混层质量分数为65%~75%,此外,含有部分伊利石、绿泥石等,处于晚成岩B亚期。
2.3 储层特征
页岩储层孔隙具有类型多样、形态复杂、尺度细微等特征,按照成因类型,目前分为有机质孔、无机质孔和微裂缝等[18-23]。通过氩粒子抛光与扫描电镜手段观察到古生界页岩中以有机质孔发育最广泛,有机质体内互相连通的三维空间网络提供了最佳的页岩气赋存场所和渗流通道[24-25]。在四川盆地五峰组—龙马溪组原始储层中,有机质孔体积占孔隙体积的62%,并赋存了体积分数为55%吸附气和23%游离气[26]。
目前普遍采用甲烷等温吸附实验来衡量储层吸附能力,实验得到的Langmuir体积与w(TOC)呈正相关[7]。常页1井牛蹄塘组w(TOC)平均值可达9.8%,估算有机质体积占岩石体积的18%左右,部分有机质承受了上覆地层压力而定向排列。在有机质热演化过程中,大孔(孔径>50 nm)容易坍塌或破坏而向中孔(2~50 nm)和微孔(<2 nm)转变,导致储层具有较大的比表面积,吸附能力增强。常页1井、花页1井牛蹄塘组Langmuir体积可达6~7 cm3/g[9, 23],而五峰组—龙马溪组Langmuir体积仅为2~3 cm3/g,由此推断牛蹄塘组原始储层中吸附气体积分数较高,游离气体积分数较低。目前,普遍认为吸附气比游离气更容易保存[27-30]。
图2 四川盆地及周缘五峰组—龙马溪组笔石带特征(焦页1井)
Fig. 2 Graptolites zone characteristics of O3w—S1l in Sichuan Basin and its adjacent areas
2.4 热演化史
董清源等[31]分析了盆地热史—埋藏史—生烃史,指出湘西北地区牛蹄塘组在印支期进入热成熟晚期,为生油高峰,燕山早期达到过成熟干气阶段,具有早期生烃特点;而五峰组—龙马溪组在燕山早期进入生油期,燕山晚期达到进入生干气阶段,具有晚期生烃特点,见图3。
印支期构造运动形成了大量圈闭,有利于页岩气聚集,但江南雪峰隆起在距今200~165 Ma自东南向西北挤压,产生了强烈的断裂、抬升及剥蚀,与牛蹄塘组主要生气时间一致,破坏页岩气聚集。然而,对于残留向斜内五峰组—龙马溪组页岩气聚集影响较小[32]。
图3 永顺区块牛蹄塘组埋藏史—热演化史
Fig. 3 Burial-thermal evolution history of ∈1n in Yongshun block
2.5 含气性
含气性不仅是保存条件的直接体现,而且是衡量是否具有经济开采价值的关键指标。慈页1井和永页2井的解吸气量在钻井现场通过SY/T 6940—2013“页岩含气量测试方法”获得,残余气量通过实验室内粉碎的岩心的含气性获得,而损失气量采用USBM (United States Bureau of Mines)提供的方法直接计算。目前,湘西北牛蹄塘组近70%井无气或氮气体积分数超过90%,如常页1井和花页1井等,而五峰组—龙马溪组一般含气量为2~4 m3/t,且甲烷体积分数超过90%,如龙参2井和永页2井。
湘西北古生界富有机质页岩含气性特征对比见图4,湘西北古生界富有机质页岩聚集条件对比见表2。从图4和表2可见:慈页1井牛蹄塘组岩心最高含气量达0.95 m3/t,残余气(体积分数,下同)超过65%,而解吸气低于20%,并含约20%氮气;永页2井五峰组—龙马溪组岩心含气量为2.0~3.6 m3/t,解吸气超过50%,残余气低于20%,甲烷体积分数高达95%,与焦页1井总含气量高、游离气平均占65.7%类似[28]。这说明原始储层中,牛蹄塘组遭受一定破坏后游离气逸散,主要以吸附态赋存,并含有部分氮气;而五峰组—龙马溪组保存较好,主要以游离态赋存,甲烷体积分数高。
表2 湘西北古生界富有机质页岩聚集条件对比
Table 2 Accumulation condition comparison of Paleozoic organic-rich shale in Northwestern Hunan
图4 湘西北古生界富有机质页岩含气性特征对比
Fig. 4 Gas-bearing comparison of Paleozoic organic-rich shale in Northwestern Hunan
3 聚集差异性分析
3.1 沉积环境
扬子地区牛蹄塘组和五峰组—龙马溪组烃源岩的形成与广泛发育的热水沉积作用密不可分,两者存在良好的时空重叠关系[15]。在早寒武世,热水活动及上升洋流带来丰富的营养物质和微量元素,促进了湘西北地区藻类、疑源类等浮游生物快速发育,很高的有机质生产率和弱封闭、滞留、缺氧的水体有利于有机质的保存,导致牛蹄塘组有机质异常富集,局部产石煤[2]。在早奥陶世,热水活动减弱,强封闭环境中生物繁盛,大量放射虫、海绵骨针、有孔虫以及笔石等硅质壳体更容易在闭塞、缺氧的环境中保留下来,在有机质热演化过程中,生物遗体构成了最佳的“源储匹配关系”,并有利于形成天然裂缝和后期压裂改造[17,29]。
3.2 顶底板条件
伴随着勘探不断深入,研究者们逐渐认识到良好的顶底板条件是页岩气保存的重要因素,源盖空间的动静匹配关系控制着页岩气富集位置及程度[12, 30]。
牛蹄塘组富有机质页岩顶板为厚层页岩、粉砂质页岩,岩心发育大量高角度裂缝;底板为灯影组灰岩、白云质灰岩,且发育有溶蚀缝洞,不利于页岩气保存。湘西北常德地区自三叠世以来,页岩气在扩散作用下沿着大量非贯穿裂缝长期排烃至滑脱面,然后运移至其他部位,导致含气性较差[20]。
五峰组—龙马溪组富有机质页岩顶板为龙马溪组LM5—LM8段灰色笔石页岩,厚度超过200 m,裂缝不发育,底板为宝塔组厚层致密龟裂灰岩,溶蚀孔洞不发育,且龟裂纹内进一步充填了泥、粉砂等。良好的顶底板条件有效阻止了大规模天然气逸散。四川盆地页岩气的成功开发证实了五峰组—龙马溪组顶底板条件优越。
3.3 断裂与滑脱层
页岩气保存取决于断裂规模而非发育程度[33],南方地区邻近或者钻遇通天断裂的页岩气井含气性变差。随着勘探工作深入,发现研究区富有机质页岩为构造软弱面,广泛发育的滑脱层封闭性较差,成为流体运移的重要输导层,并影响页岩气富集[34]。
湘西北普遍发育基底卷入式构造,存在2个区域性顺层滑脱面。
1) 牛蹄塘组主滑脱层中黑色页岩往往较破碎,发育层间滑动面、高角度裂缝等,充填了燕山—喜山期多期次方解石脉,并在向斜核部延伸至次级滑脱层五峰组—龙马溪组底部,硅质页岩、硅质岩发育密集垂直岩层的共轭节理,岩层面发育明显的滑动镜面,见图5和图6。
2) 牛蹄塘组滑脱面较广,连接燕山—喜山期通天断裂,大气随着地下水沿着断裂渗入,导致页岩中甲烷体积分数低,氮气体积分数高[20]。但在向斜核部五峰组—龙马溪组富有机质页岩的滑脱层规模和范围较小,且未连接通天断裂,甲烷仅沿着滑脱面在页岩内部小规模、短距离运移,页岩气未遭受实质性破坏,见图6(其中,剖面位置见图1)。
图5 桑植—石门复向斜走廊剖面图[19]
Fig. 5 Corridor section map in Sangzhi—Shimen syncline
图6 富有机质页岩及顶底板特征
Fig. 6 Characteristics of Paleozoic organic-rich shale and its roof and floor
4 讨论
4.1 页岩气聚集关键因素
通过近年来四川盆地页岩气的成功勘探开发,研究者认识到中美页岩气聚集条件的差异,相继提出“二元富集”模式、“三元聚集”、页岩气“甜点区”等理论,强调“沉积条件控制了页岩气聚集的物质基础,保存条件决定了页岩气富集程度”[13, 35-38] 。
4.1.1 沉积条件
五峰组—龙马溪组纵向上“五性一体”的特征决定了富有机质页岩段有利于页岩气的富集和开发[39]。在深水(硅泥质)陆棚相下,五峰组—龙马溪组页岩以富含硅质、炭质为特征,w(TOC)控制了生烃及储气能力,并进一步决定了含气量。类似焦页1井以及宜地2井[35],湘西北永页2井富有机质页岩总含气量与w(TOC)呈正相关关系(图7),龙参2井中纵向上页岩含气性也随着w(TOC)的变化而变化,见图8。
图7 富有机质页岩含气量与w(TOC)关系
Fig. 7 Relationship between gas content and w(TOC) in organic-rich shales
图8 龙参2井储层特征图
Fig. 8 Reservoir characteristic map of Longcan 2 Well
4.1.2 保存条件
早期普遍认为富有机质页岩集“生、储、盖、圈、运、保”等要素于一体[14],但中国南方尤其是湘西北地区经历了复杂的多期次构造运动,差异性埋藏—隆升剥蚀—构造变形作用影响页岩气聚集,导致“页岩资源丰富并非页岩气资源丰富”[5,40]。与湖北宜昌地区牛蹄塘组(水井沱组)以及四川盆地内五峰组—龙马溪组相比,湘西北牛蹄塘组页岩尽管具有异常优越的生烃和储集条件,但不利的顶底板条件、严重的断裂及滑脱层破坏作用导致含气量较低。因此,良好的保存条件才是页岩气富集的关键。
在向斜区域,通天断裂不发育,牛蹄塘组埋深3~5 km,局部6~7 km,推测局部保存条件较好,存在高压地层,页岩含气性较好。五峰组—龙马溪组埋深2~3 km,五峰组—龙马溪组底部滑脱层规模较小(见图4、图8),有利于页岩气短距离运移和富集。地层处于超压—常压状态,核部往往含气性较好。
在背斜区域,五峰组—龙马溪组往往被剥蚀,牛蹄塘组埋深2~3 km,甚至出露地表;牛蹄塘组底部顺层滑脱层规模较大,并连接大规模的“开天窗”断裂,破坏地层封闭性,页岩气已经大部分运移散失,地层处于常压—低压状态,含气性往往较差。
4.2 页岩气勘探方向
湘西北乃至整个南方古生界页岩气聚集条件的差异导致勘探效果不同,因此,必须针对不同层位页岩气聚集特点调整勘探方向。
湘西北牛蹄塘组具有优越的生烃条件,估算资源量超过1万亿m3 [41-42],但后期断裂及滑脱等双重作用导致页岩气发生了大规模运移,烃源岩往往属于逸散模式(页岩欠饱和、开放流体系统)[43]。若遇到合适的圈闭条件,则运移出来的页岩气可以再次聚集形成新的“外源供给型”气藏。湘张地1井中不仅牛蹄塘组有较好的含气性,而且灯影组白云岩裂缝与溶孔、清虚洞组碳酸盐岩裂缝等均有明显含气性显示,进一步证实了“外源供给型”气藏的可能性。牛蹄塘组是四川盆地安岳寒武系龙王庙组白云岩中孔隙—裂缝型特大型气田的主力气源岩[44-45]。鉴于目前针对烃源岩层内勘探效果不佳,牛蹄塘组未来勘探一方面按照“高中找低、强中找弱、好中找厚”原则继续寻找“地质甜点区”[46-47],另一方面也应高度重视寻找“外源供给型”气藏,见图9。
五峰组—龙马溪组具有良好的含气性,属于富集模式(高含气量、封闭流体系统)[43]。但仅“点火成功”一直困扰着页岩气勘探突破。四川盆地及周缘五峰组—龙马溪组滑脱层形成的良好输导层,通过“阶梯运移、背斜汇聚”提高了资源丰度,形成了地质与工程双重“甜点区”,贵州安场向斜和华蓥山背斜五峰组—龙马溪组富有机质泥页岩均小于20 m,仍获较高的页岩气产能[48-49]。湘西北地区残留向斜内五峰组—龙马溪组有着类似的地质条件,具有形成免压裂商业开发“甜点区”可能性,这成为盆地外常压区、低丰度页岩气经济、高效勘探新方向。
图9 复杂地质条件区海相页岩气聚集模式示意图
Fig.9 Mode map of marine shale gas accumulation in complex geological condition zone
5 结论
1) 通过对比研究湘西北地区寒武系牛蹄塘组和奥陶系五峰组—志留系龙马溪组聚集条件,发现二者存在显著差异:牛蹄塘组岩性以热水作用下的硅质页岩为主,w(TOC)及厚度异常高,储层吸附能力强,但是含气性较差;五峰组—龙马溪组以生物作用下的硅质页岩、硅质岩为主,w(TOC)为2%~4%,厚度为20~30 m,储层吸附能力较弱,含气性较好。
2) 导致两者聚集条件差异的原因包括:沉积环境控制页岩w(TOC)和厚度;牛蹄塘组顶底板封盖能力较差,影响含气性;牛蹄塘组热演化程度高,主要生气期与燕山—喜山期构造运动时期一致,导致页岩气逸散;断裂与滑脱双重作用导致牛蹄塘组含气性较低。
3) 复杂地质条件区页岩气聚集的关键因素是:沉积条件控制页岩气聚集的物质基础,保存条件控制页岩气富集程度。未来牛蹄塘组勘探应该重视寻找“外源供给型”气藏,五峰组—龙马溪组应重视残留向斜内滑脱作用形成的“甜点区”。
参考文献:
[1] BOWKER K A. Barnett shale gas production, Fort Worth Basin: Issues and discussion[J]. AAPG Bulletin, 2007, 91(4): 523-533.
[2] 赵文智, 李建忠, 杨涛, 等. 中国南方海相页岩气成藏差异性比较与意义[J]. 石油勘探与开发, 2016, 43(4): 499-510.
ZHAO Wenzhi, LI Jianzhong, YANG Tao, et al. Geological difference and its significance of marine shale gases in South China[J]. Petroleum Exploration and Development, 2016, 43(4): 499-510.
[3] 陈孝红, 危凯, 张保民, 等. 湖北宜昌寒武系水井沱组页岩气藏主控地质因素和富集模式[J]. 中国地质, 2018, 45(2): 207-226.
CHEN Xiaohong, WEI Kai, ZHANG Baomin, et al. Main geological factors controlling shale gas reservior in the Cambrian Shuijingtuo formation in Yichang of Hubei Province as well as its and enrichment patterns[J]. Geology in China, 2018, 45(2): 207-226.
[4] 翟刚毅, 包书景, 王玉芳, 等. 古隆起边缘成藏模式与湖北宜昌页岩气重大发现[J]. 地球学报, 2017, 38(4): 441-447.
ZHAI Gangyi, BAO Shujing, WANG Yufang, et al. Reservoir accumulation model at the edge of palaeohigh and significant discovery of shale gas in Yichang area, Hubei Province[J]. Acta Geoscientica Sinica, 2017, 38(4): 441-447.
[5] 王世谦. 页岩气资源开采现状、问题与前景[J]. 天然气工业, 2017, 37(6): 115-130.
WANG Shiqian. Shale gas exploitation: Status, issues and prospects[J]. Natural Gas Industry, 2017, 37(6): 115-130.
[6] WAN Yi, TANG Shuheng, PAN Zhejun. Evaluation of the shale gas potential of the lower Silurian Longmaxi Formation in Northwest Hunan Province, China[J]. Marine and Petroleum Geology, 2017, 79: 159-175.
[7] 秦明阳, 蔡宁波, 郑振华. 海相页岩气目标区优选研究: 以湖南某中标区块为例[J]. 中国煤炭地质, 2015, 27(3): 24-28, 45.
QIN Mingyang, CAI Ningbo, ZHENG Zhenhua. Marine shale gas target area optimization: a case study of a bid winning block in Hunan[J]. Coal Geology of China, 2015, 27(3): 24-28, 45.
[8] 王阳, 朱炎铭, 陈尚斌, 等. 湘西北下寒武统牛蹄塘组页岩气形成条件分析[J]. 中国矿业大学学报, 2013, 42(4): 586-594.
WANG Yang, ZHU Yanming, CHEN Shangbin, et al. Formation conditions of shale gas in Lower Cambrian Niutitang Formation,Northwestern Hunan[J]. Journal of China University of Mining & Technology, 2013, 42(4): 586-594.
[9] 林拓, 张金川, 包书景, 等. 湘西北下寒武统牛蹄塘组页岩气井位优选及含气性特征:以常页1井为例[J]. 天然气地球科学, 2015, 26(2): 312-319.
LIN Tuo, ZHANG Jinchuan, BAO Shujing, et al. The optimum selecting of shale gas well location and gas content of lower Cambrian, Northwest Hunan: a case study of well changye[J]. Natural Gas Geoscience, 2015, 26(2): 312-319.
[10] 林拓, 张金川, 李博, 等. 湘西北常页1井下寒武统牛蹄塘组页岩气聚集条件及含气特征[J]. 石油学报, 2014, 35(5): 839-846.
LIN Tuo, ZHANG Jinchuan, LI Bo, et al. Shale gas accumulation conditions and gas-bearing properties of the lower Cambrian niutitang formation in well changye 1, Northwestern Hunan[J]. Acta Petrolei Sinica, 2014, 35(5): 839-846.
[11] 林拓, 张金川, 李博, 等. 湘西北地区龙马溪组页岩气聚集条件与含气性分析[J]. 新疆石油地质, 2014, 35(5): 507-510.
LIN Tuo, ZHANG Jinchuan, LI Bo, et al. Accumulation conditions and gas-bearing characteristic analysis of Longmaxi shale gas in Northwestern Hunan Province[J]. Xinjiang Petroleum Geology, 2014, 35(5): 507-510.
[12] 聂海宽, 金之钧, 边瑞康, 等. 四川盆地及其周缘上奥陶统五峰组—下志留统龙马溪组页岩气“源-盖控藏”富集[J]. 石油学报, 2016, 37(5): 557-571.
NIE Haikuan, JIN Zhijun, BIAN Ruikang, et al. The “source-cap hydrocarbon-controlling” enrichment of shale gas in upper Ordovician Wufeng formation-lower Silurian Longmaxi formation of Sichuan basin and its periphery[J]. Acta Petrolei Sinica, 2016, 37(5): 557-571.
[13] 郭彤楼. 中国式页岩气关键地质问题与成藏富集主控因素[J]. 石油勘探与开发, 2016, 43(3): 317-326.
GUO Tonglou. Key geological issues and main controls on accumulation and enrichment of Chinese shale gas[J]. Petroleum Exploration and Development, 2016, 43(3): 317-326.
[14] 聂海宽, 金之钧, 马鑫, 等. 四川盆地及邻区上奥陶统五峰组—下志留统龙马溪组底部笔石带及沉积特征[J]. 石油学报, 2017, 38(2): 160-174.
NIE Haikuan, JIN Zhijun, MA Xin, et al. Graptolites zone and sedimentary characteristics of upper Ordovician Wufeng FormationLower Silurian Longmaxi formation in Sichuan basin and its adjacent areas[J]. Acta Petrolei Sinica, 2017, 38(2): 160-174.
[15] 贾智彬, 侯读杰, 孙德强, 等. 热水沉积判别标志及与烃源岩的耦合关系[J]. 天然气地球科学, 2016, 27(6): 1025-1034.
JIA Zhibin, HOU Dujie, SUN Deqiang, et al. Hydrothermal sedimentary discrimination criteria and its coupling relationship with the source rocks[J]. Natural Gas Geoscience, 2016, 27(6): 1025-1034.
[16] 刘安, 李旭兵, 王传尚, 等. 湘鄂西寒武系烃源岩地球化学特征与沉积环境分析[J]. 沉积学报, 2013, 31(6): 1122-1132.
LIU An, LI Xubing, WANG Chuanshang, et al. Analysis of geochemical feature and sediment environment for hydrocarbon source rocks of Cambrian in West Hunan—Hubei Area[J]. Acta Sedimentologica Sinica, 2013, 31(6): 1122-1132.
[17] 王淑芳, 邹才能, 董大忠, 等. 四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义[J]. 北京大学学报(自然科学版), 2014, 50(3): 476-486.
WANG Shufang, ZOU Caineng, DONG Dazhong, et al. Biogenic silica of organic-rich shale in Sichuan basin and its significance for shale gas[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3): 476-486.
[18] 张晓明, 石万忠, 徐清海, 等. 四川盆地焦石坝地区页岩气储层特征及控制因素[J]. 石油学报, 2015, 36(8): 926-939, 953.
ZHANG Xiaoming, SHI Wanzhong, XU Qinghai, et al. Reservoir characteristics and controlling factors of shale gas in Jiaoshiba area, Sichuan basin[J]. Acta Petrolei Sinica, 2015, 36(8): 926-939, 953.
[19] 郭建华, 朱美衡, 刘辰生, 等. 湖南桑植—石门复向斜走廊剖面构造特征分析[J]. 大地构造与成矿学, 2005, 29(2): 215-222.
GUO Jianhua, ZHU Meiheng, LIU Chensheng, et al. Structural characteristics of the corridor section in Sangzhi—Shimen synclinore[J]. Geotectonica et Metallogenia, 2005, 29(2): 215-222.
[20] 梁峰, 朱炎铭, 漆麟, 等. 湖南常德地区牛蹄塘组富有机质页岩成藏条件及含气性控制因素[J]. 天然气地球科学, 2016, 27(1): 180-188.
LIANG Feng, ZHU Yanming, QI Lin, et al. Accumulation condition and gas content influence factors of niutitang formation organic-rich shale in changde area, Hunan Province[J]. Natural Gas Geoscience, 2016, 27(1): 180-188.
[21] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: the Mississippian Barnett Shale of North-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499.
[22] LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098.
[23] 秦明阳, 郭建华, 黄俨然, 等. 四川盆地东缘湘西北地区牛蹄塘组页岩储层特征及影响因素[J]. 石油与天然气地质, 2017, 38(5): 922-932.
QIN Mingyang, GUO Jianhua, HUANG Yanran, et al. Characteristics and influencing factors of shale reservoirs in the niutitang formation of Northwestern Hunan Province, and East margin of Sichuan basin[J]. Oil & Gas Geology, 2017, 38(5): 922-932.
[24] SLATT R M, O'BRIEN N R. Pore types in the Barnett and Woodford gas shales: contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030.
[25] 胡宗全, 杜伟, 彭勇民, 等. 页岩微观孔隙特征及源-储关系: 以川东南地区五峰组—龙马溪组为例[J]. 石油与天然气地质, 2015, 36(6): 1001-1008.
HU Zongquan, DU Wei, PENG Yongmin, et al. Microscopic pore characteristics and the source-reservoir relationship of shale: a case study from the Wufeng and Longmaxi formations in Southeast Sichuan basin[J]. Oil & Gas Geology, 2015, 36(6): 1001-1008.
[26] YANG Feng, NING Zhengfu, WANG Qing, et al. Pore structure characteristics of lower Silurian shales in the southern Sichuan basin, China: insights to pore development and gas storage mechanism[J]. International Journal of Coal Geology, 2016, 156: 12-24.
[27] 秦明阳, 郭建华, 黄俨然, 等. 四川盆地外复杂地质条件区海相页岩气“甜点区”优选: 以湘西北地区古生界为例[J]. 中南大学学报(自然科学版), 2019, 50(3): 596-606.
QIN Mingyang, GUO Jianhua, HUANG Yanran, et al. "Sweet spots zone" optimization of marine shale gas in complex geological conditions area out of Sichuan basin: a case of Paleozoic in Northwestern Hunan, China[J]. Journal of Central South University(Science and Technology), 2019, 50(3): 596-606.
[28] 腾格尔, 申宝剑, 俞凌杰. 四川盆地五峰组—龙马溪组页岩气形成与聚集机理[J]. 石油勘探与开发, 2017, 44(1): 69-78.
BORJIGIN Tenger, SHEN Baojian, YU Lingjie, et al. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng—Longmaxi Formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(1): 69-78.
[29] 邱振, 邹才能, 李熙喆, 等. 论笔石对页岩气源储的贡献: 以华南地区五峰组—龙马溪组笔石页岩为例[J].天然气地球科学, 2018, 29(5): 606-615.
QIU Zhen, ZOU Caineng, LI Xizhe, et al. Discussion on the contribution of Graptolite to organic enrichment and reservoir of gas shale: a case study of the Wufeng—Longmaxi formations in South China[J]. Natural Gas Geoscience, 2018, 29(5): 606-615.
[30] GUO Tonglou. Evaluation of highly thermally mature shale-gas reservoirs in complex structural parts of the Sichuan Basin[J]. Journal of Earth Science, 2013, 24(6): 863-873.
[31] 董清源, 田建华, 冉琦, 等. 湖南永顺区块牛蹄塘组页岩气勘探前景及选区评价[J]. 东北石油大学学报, 2016, 40(3): 61-69.
DONG Qingyuan, TIAN Jianhua, RAN Qi, et al. Exploration potential and favorable paly identification of Niutitang formation shale gas of Yongshun block in Hunan Province[J]. Journal of Northeast Petroleum University, 2016, 40(3): 61-69.
[32] 翟刚毅, 王玉芳, 包书景, 等. 我国南方海相页岩气富集高产主控因素及前景预测[J]. 地球科学, 2017, 42(7): 1057-1068.
ZHAI Gangyi, WANG Yufang, BAO Shujing, et al. Major factors controlling the accumulation and high productivity of marine shale gas and prospect forecast in southern China[J]. Earth Science, 2017, 42(7): 1057-1068.
[33] ZENG Lianbo, LU Wenya , LI Jian, et al. Natural fractures and their influence on shale gas enrichment in Sichuan basin, China[J]. Journal of Natural Gas Science and Engineering, 2016, 30: 1-9.
[34] 刘安, 欧文佳, 黄惠兰, 等. 湘鄂西地区奥陶系—志留系滑脱层古流体对页岩气保存的意义[J]. 天然气工业, 2018, 38(5): 34-43.
LIU An, OU Wenjia , HUANG Huilan, et al. Significance of paleo-fluid in the Ordovician—Silurian detachment zone to the preservation of shale gas in Western Hunan—Hubei area[J]. Natural Gas Industry, 2018, 38(5): 34-43.
[35] 郭旭升. 南方海相页岩气“二元富集”规律: 四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7): 1209-1218.
GUO Xusheng. Rules of two-factor enrichiment for marine shale gas in southern China: understanding from the longmaxi formation shale gas in Sichuan basin and its surrounding area[J]. Acta Geologica Sinica, 2014, 88(7): 1209-1218.
[36] 王志刚. 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质, 2015, 36(1): 1-6.
WANG Zhigang. Breakthrough of Fuling shale gas exploration and development and its inspiration[J]. Oil & Gas Geology, 2015, 36(1): 1-6.
[37] CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938.
[38] GUO Tonglou, ZHANG Hanrong. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan basin[J]. Petroleum Exploration and Development, 2014, 41(1): 31-40.
[39] 金之钧, 胡宗全, 高波, 等. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23(1): 1-10.
JIN Zhijun, HU Zongquan, GAO Bo, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng—Longmaxi formations, southeastern Sichuan basin[J]. Earth Science Frontiers, 2016, 23(1): 1-10.
[40] 刘树根, 邓宾, 钟勇, 等. 四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用[J]. 地学前缘, 2016, 23(1): 11-28.
LIU Shugen, DENG Bin, ZHONG Yong, et al. Unique geological features of burial and superimposition of the lower Paleozoic shale gas across the Sichuan basin and its periphery[J]. Earth Science Frontiers, 2016, 23(1): 11-28.
[41] 张琳婷, 郭建华, 焦鹏, 等. 湘西北地区牛蹄塘组页岩气有利地质条件及成藏区带优选[J]. 中南大学学报(自然科学版), 2015, 46(5): 1715-1722.
ZHANG Linting, GUO Jianhua, JIAO Peng, et al. Geological conditions and favorable exploration zones of shale gas in niutitang formation at northwest Hunan[J]. Journal of Central South University(Science and Technology), 2015, 46(5): 1715-1722.
[42] 张琳婷, 郭建华, 焦鹏, 等. 湘西北下寒武统牛蹄塘组页岩气藏形成条件与资源潜力[J]. 中南大学学报(自然科学版), 2014, 45(4): 1163-1173.
ZHANG Linting, GUO Jianhua, JIAO Peng, et al. Accumulation conditions and resource potential of shale gas in lower Cambrian niutitang formation, Northwestern Hunan[J]. Journal of Central South University(Science and Technology), 2014, 45(4): 1163-1173.
[43] HAO Fang, ZOU Huayao, LU Yongchao. Mechanisms of shale gas storage: Implications for shale gas exploration in China[J]. AAPG Bulletin, 2013, 97(8): 1325-1346.
[44] 邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3): 278-293.
ZOU Caineng, DU Jinhu, XU Chunchun, et al. Formation, distribution, resource potential and discovery of the Sinian—Cambrian giant gas field, Sichuan basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 278-293.
[45] 郑平, 施雨华, 邹春艳, 等. 高石梯—磨溪地区灯影组、龙王庙组天然气气源分析[J]. 天然气工业, 2014, 34(3): 50-54.
ZHENG Ping, SHI Yuhua, ZOU Chunyan, et al. Natural gas sources in the Dengying and Longwangmiao fms in the Gaoshiti—Moxi area,Sichuan basin[J]. Natural Gas Industry, 2014, 34(3): 50-54.
[46] 顾志翔, 何幼斌, 彭勇民, 等. 川南—黔中地区下寒武统页岩气富集条件探讨[J]. 天然气地球科学, 2017, 28(4): 642-653.
GU Zhixiang, HE Youbin, PENG Yongmin, et al. Shale gas accumulation conditions of the lower Cambrian in southern Sichuan-central Guizhou, China[J]. Natural Gas Geoscience, 2017, 28(4): 642-653.
[47] 郗兆栋, 唐书恒, 王静, 等. 中国南方海相页岩气选区关键参数探讨[J]. 地质学报, 2018, 92(6): 1313-1323.
XI Zhaodong, TANG Shuheng, WANG Jing, et al. Evaluation parameters study of selecting favorable shale gas areas in southern China[J]. Acta Geologica Sinica, 2018, 92(6): 1313-1323.
[48] 何江林, 王剑, 余谦, 等. 外源补给型页岩气的发现及油气地质意义[J]. 石油学报, 2018, 39(1): 12-22.
HE Jianglin, WANG Jian, YU Qian, et al. Discovery of exogenous type shale gas and its geological significance to hydrocarbon exploration[J]. Acta Petrolei Sinica, 2018, 39(1): 12-22.
[49] 翟刚毅, 包书景, 庞飞, 等. 武陵山复杂构造区古生界海相油气实现重大突破[J]. 地球学报, 2016, 37(6): 657-662.
ZHAI Gangyi, BAO Shujing, PANG Fei, et al. Breakthrough of the natural gas of Paleozoic marine strata in Wuling mountain complex tectonic zone[J]. Acta Geoscience Sinica, 2016, 37(6): 657-662.
(编辑 陈灿华)
收稿日期: 2019 -04 -08; 修回日期: 2019 -06 -22
基金项目(Foundation item):国家自然科学基金资助项目(41603046);湖南省自然科学基金资助项目(2017JJ1034)(Project(41603046) supported by the National Natural Science Foundation of China; Project(2017JJ1034) supported by the Natural Science Foundation of Hunan Province)
通信作者:郭建华,教授,博士生导师,从事沉积学与石油地质研究;E-mail: gjh796@csu.edu.cn