基于随机森林算法的煤层气直井产气量模型
来源期刊:煤炭学报2020年第8期
论文作者:朱庆忠 胡秋嘉 杜海为 樊彬 祝捷 张斌 赵雨寒 刘斌 唐俊
文章页码:2846 - 2855
关键词:煤层气井;产气量模型;随机森林算法;历史拟合;产量预测;
摘 要:煤层气产量评价和预测是煤层气开发工程决策的关键基础。随机森林算法具有计算量小、精确度高的优点。影响煤层气井产能的参数包含地质参数、工程措施和排采工艺参数。煤储层地质参数分为动态参数和静态参数两个部分。静态地质参数由煤层的本质属性决定,如:煤层埋深、煤层厚度、地应力等;动态地质参数在排采过程中发生动态变化,如储层压力、渗透率等。排采工艺参数多为动态参数,主要受人为调控,如井底流压、套压、动液面深度、冲次、冲程等。当煤层气井完成选址、钻井、水力压裂等条件进入生产阶段,排采工艺参数对其产量影响至关重要。基于随机森林算法,分析了沁水盆地郑村区块15号煤层8口煤层气井的地质参数和排采工艺参数对产气量的影响,计算得到了排采工艺参数对煤层气井产气量影响的重要性指标排序,即流压>套压>动液面>冲次>冲程>埋深。将煤层气井最近60 d的生产数据作为产气量预测的测试样本,其余历史生产数据作为学习样本。学习样本经过缺失值处理、异常数据处理后,输入至R语言中,利用随机森林算法对历史产气量进行拟合分析。综合考虑排采工艺参数和历史产气量的动态变化对煤层气井后续日产气量的影响,建立了煤层气井的产量模型。依据随机森林算法的分枝优度准则,预测了不同排采方案下的煤层气井日产气量,将预测值与测试样本进行对比分析。结果显示,日产气量预测值中95%以上的数据与实际产量数据(测试样本)的误差小于5%,这说明基于随机森林算法的煤层气直井产量模型具有较高的拟合及预测精度,为煤层气井产能评价和预测提供了借鉴。
朱庆忠1,胡秋嘉1,杜海为1,樊彬1,祝捷2,张斌1,赵雨寒2,刘斌1,唐俊2
1. 华北油田公司2. 中国矿业大学(北京)力学与建筑工程学院
摘 要:煤层气产量评价和预测是煤层气开发工程决策的关键基础。随机森林算法具有计算量小、精确度高的优点。影响煤层气井产能的参数包含地质参数、工程措施和排采工艺参数。煤储层地质参数分为动态参数和静态参数两个部分。静态地质参数由煤层的本质属性决定,如:煤层埋深、煤层厚度、地应力等;动态地质参数在排采过程中发生动态变化,如储层压力、渗透率等。排采工艺参数多为动态参数,主要受人为调控,如井底流压、套压、动液面深度、冲次、冲程等。当煤层气井完成选址、钻井、水力压裂等条件进入生产阶段,排采工艺参数对其产量影响至关重要。基于随机森林算法,分析了沁水盆地郑村区块15号煤层8口煤层气井的地质参数和排采工艺参数对产气量的影响,计算得到了排采工艺参数对煤层气井产气量影响的重要性指标排序,即流压>套压>动液面>冲次>冲程>埋深。将煤层气井最近60 d的生产数据作为产气量预测的测试样本,其余历史生产数据作为学习样本。学习样本经过缺失值处理、异常数据处理后,输入至R语言中,利用随机森林算法对历史产气量进行拟合分析。综合考虑排采工艺参数和历史产气量的动态变化对煤层气井后续日产气量的影响,建立了煤层气井的产量模型。依据随机森林算法的分枝优度准则,预测了不同排采方案下的煤层气井日产气量,将预测值与测试样本进行对比分析。结果显示,日产气量预测值中95%以上的数据与实际产量数据(测试样本)的误差小于5%,这说明基于随机森林算法的煤层气直井产量模型具有较高的拟合及预测精度,为煤层气井产能评价和预测提供了借鉴。
关键词:煤层气井;产气量模型;随机森林算法;历史拟合;产量预测;