简介概要

Fabrication of Fibrous Mullite-alumina Ceramic with High Strength and Low Thermal Conductivity

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2019年第6期

论文作者:杨孟孟 罗旭东 YI Jian ZHANG Xiaofang PENG Zijun

文章页码:1415 - 1420

摘    要:Optimizing highly porous fibrous ceramics, like bird’s nest structure, were obtained by vacuum impregnation method with mullite fibers and alumina sol as raw material. The influences of impregnation cycles on the property of the sample, such as porosity, compressive strength and room-temperature thermal conductivity were explored. The experimental results show that the 3D skeleton structure of the sample was constructed by the randomly arranged mullite fibers and inorganic particles. The content of alumina can be adjusted effectively by impregnation times and it increases with increasing impregnation cycles. The thermal conductivity and compressive strength can also be controlled via tailored impregnation cycles. The compressive strength of fibrous ceramic ranged from 1.03 MPa to 5.31 MPa, while the porosity decrease slightly from 85.3% to 73.8%. In the same time, the thermal conductivity increase from 0.037 W/(m·K) to 0.217 W/(m·K), indicating that the fibrous ceramic with high impressive and low thermal conductivity can be fabricated by impregnation method.

详情信息展示

Fabrication of Fibrous Mullite-alumina Ceramic with High Strength and Low Thermal Conductivity

杨孟孟1,2,罗旭东1,YI Jian2,ZHANG Xiaofang1,PENG Zijun1

1. School of Materials and Metallurgy, University of Science and Technology Liaoning2. Ningbo Institute of Industrial Technology, Chinese Academy of Science

摘 要:Optimizing highly porous fibrous ceramics, like bird’s nest structure, were obtained by vacuum impregnation method with mullite fibers and alumina sol as raw material. The influences of impregnation cycles on the property of the sample, such as porosity, compressive strength and room-temperature thermal conductivity were explored. The experimental results show that the 3D skeleton structure of the sample was constructed by the randomly arranged mullite fibers and inorganic particles. The content of alumina can be adjusted effectively by impregnation times and it increases with increasing impregnation cycles. The thermal conductivity and compressive strength can also be controlled via tailored impregnation cycles. The compressive strength of fibrous ceramic ranged from 1.03 MPa to 5.31 MPa, while the porosity decrease slightly from 85.3% to 73.8%. In the same time, the thermal conductivity increase from 0.037 W/(m·K) to 0.217 W/(m·K), indicating that the fibrous ceramic with high impressive and low thermal conductivity can be fabricated by impregnation method.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号