简介概要

Preparation, spectral characteristics and photocatalytic activity of Eu3+-doped WO3 nanoparticles

来源期刊:JOURNAL OF RARE EARTHS2011年第8期

论文作者:王聪 曹林

文章页码:727 - 731

摘    要:Eu3+-WO3 nanoparticles were successfully prepared by the modified method of Pechini. The prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), and UV-vis spectroscopy. Results showed that the Eu3+-WO3 nanoparticles, which had an average external diameter of 10-25 nm, were composed of the different shapes of puncheon and catenary after being pretreated by pH, pressure vessal, and surfactant. Moreover, structural transformation matrix contained different crystals of anorthic and orthorhombic structure. The photocatalytic activities of the nanoparticles were evaluated by photocatalytic decomposition of rhodamine B. Eu3+-WO3 nanoparticles were more efficient than WO3 and TiO2 on sunlight use ratio. Photocatalysis experiments indicated that the Eu3+-WO3 nanoparticles exhibited the highest photocatalytic activity.

详情信息展示

Preparation, spectral characteristics and photocatalytic activity of Eu3+-doped WO3 nanoparticles

王聪,曹林

School of Materials Science and Engineering, University of Science and Technology Beijing

摘 要:Eu3+-WO3 nanoparticles were successfully prepared by the modified method of Pechini. The prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), and UV-vis spectroscopy. Results showed that the Eu3+-WO3 nanoparticles, which had an average external diameter of 10-25 nm, were composed of the different shapes of puncheon and catenary after being pretreated by pH, pressure vessal, and surfactant. Moreover, structural transformation matrix contained different crystals of anorthic and orthorhombic structure. The photocatalytic activities of the nanoparticles were evaluated by photocatalytic decomposition of rhodamine B. Eu3+-WO3 nanoparticles were more efficient than WO3 and TiO2 on sunlight use ratio. Photocatalysis experiments indicated that the Eu3+-WO3 nanoparticles exhibited the highest photocatalytic activity.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号