Comparative Study of Tensile and Charpy Impact Properties of X70 and X80 Linepipe Steels After Ultra Fast Cooling Processing
来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2017年第3期
论文作者:李壮 田勇 何真 WEI Zhanshan
文章页码:654 - 660
摘 要:Ultra fast cooling(UFC) processing after hot deformation was conducted on X70 and X80 linepipe steels. Tensile and charpy impact properties of both steels have been investigated in this work. The results have shown that the mechanical properties satisfy all the standard requirements of the X70 and X80 steels. UFC results in a presence of microstructure containing quasi polygonal(QF), acicular ferrite(AF) and granular bainite(GB). The alloying elements and UFC enhance the strengthening contribution caused by solid solution, dispersion, dislocation and precipitation strengthening. The size and distribution of precipitates in the linepipe steels are fine and dispersed. MA is also homogeneously dispersed due to UFC. Average grain size in the X80 steel is finer than that in the X70 steel. The volume fractions of secondary phases in the X80 steel are greater than those in the X70 steel. The X80 steel remains finer and more dispersed precipitates compared to the X70 steel. As a result, the tensile properties of X80 steel are higher than those of X70 steel. The Charpy absorbed energies of X70 and X80 steels at-10 ℃ reached 436 and 460 J, respectively. They reached 433 and 461 J at-15 ℃, respectively. This is mainly attributed to the presence of larger amounts of AFs in the X80 steel. A microstructure of AF for the X80 steel results in combining high strength and high toughness.
李壮1,田勇2,SHAO Zhenyao1,WEI Zhanshan1
1. College of Materials Science and Engineering, Shenyang Aerospace University2. State Key Lab of Rolling and Automation, Northeastern University
摘 要:Ultra fast cooling(UFC) processing after hot deformation was conducted on X70 and X80 linepipe steels. Tensile and charpy impact properties of both steels have been investigated in this work. The results have shown that the mechanical properties satisfy all the standard requirements of the X70 and X80 steels. UFC results in a presence of microstructure containing quasi polygonal(QF), acicular ferrite(AF) and granular bainite(GB). The alloying elements and UFC enhance the strengthening contribution caused by solid solution, dispersion, dislocation and precipitation strengthening. The size and distribution of precipitates in the linepipe steels are fine and dispersed. MA is also homogeneously dispersed due to UFC. Average grain size in the X80 steel is finer than that in the X70 steel. The volume fractions of secondary phases in the X80 steel are greater than those in the X70 steel. The X80 steel remains finer and more dispersed precipitates compared to the X70 steel. As a result, the tensile properties of X80 steel are higher than those of X70 steel. The Charpy absorbed energies of X70 and X80 steels at-10 ℃ reached 436 and 460 J, respectively. They reached 433 and 461 J at-15 ℃, respectively. This is mainly attributed to the presence of larger amounts of AFs in the X80 steel. A microstructure of AF for the X80 steel results in combining high strength and high toughness.
关键词: