改进K-means算法优化RBF神经网络的出水氨氮预测
来源期刊:控制工程2018年第3期
论文作者:乔俊飞 孙玉庆 韩红桂
文章页码:375 - 379
关键词:氨氮预测;RBF神经网络;K-means算法;密度指标;
摘 要:为提高污水处理过程中出水氨氮的预测精度,并针对RBF神经网络参数难以确定的问题,提出一种改进K-means算法优化RBF神经网络的氨氮预测算法。首先,计算每个样本点的密度值,以其大小是否满足一个阈值为条件,判定该点是否为孤立点或噪声点,来消除孤立点和噪声点对K-means算法的影响;然后利用减法聚类算法初始化K-means算法的聚类中心,并得到聚类中心的个数,将改进后的K-means算法优化RBF神经网络结构;最后,通过对污水处理过程中出水氨氮的实际预测实验,表明所提出的算法具有较强的逼近能力。
乔俊飞,孙玉庆,韩红桂
北京工业大学信息学部
摘 要:为提高污水处理过程中出水氨氮的预测精度,并针对RBF神经网络参数难以确定的问题,提出一种改进K-means算法优化RBF神经网络的氨氮预测算法。首先,计算每个样本点的密度值,以其大小是否满足一个阈值为条件,判定该点是否为孤立点或噪声点,来消除孤立点和噪声点对K-means算法的影响;然后利用减法聚类算法初始化K-means算法的聚类中心,并得到聚类中心的个数,将改进后的K-means算法优化RBF神经网络结构;最后,通过对污水处理过程中出水氨氮的实际预测实验,表明所提出的算法具有较强的逼近能力。
关键词:氨氮预测;RBF神经网络;K-means算法;密度指标;