简介概要

基于佳点集构造的改进量子粒子群优化算法

来源期刊:中南大学学报(自然科学版)2013年第4期

论文作者:陈义雄 梁昔明 黄亚飞

文章页码:1409 - 1414

关键词:粒子群优化;混沌;早熟收敛;佳点集;量子粒子群优化

Key words:particle swarm optimization; chaos; premature convergence; good-point set; quantum particle swarm optimization

摘    要:针对粒子群优化算法易出现早熟收敛及局部搜索能力不足的特点,提出一种改进的量子粒子群优化算法(IQPSO)。该算法在量子粒子群优化算法(QPSO)的基础上,引入佳点集初始化量子的初始角位置,提高初始种群的遍历性;在粒子角速度位置更新中,采用混沌时间序列数,促使粒子跳出局部极值点;为避免粒子陷入早熟收敛,在算法中加入变异处理。仿真实验结果表明:与标准粒子群优化(SPSO)算法和量子粒子群优化(QPSO)算法比较,提出的算法具有快速的收敛能力、良好的稳定性,其优化性能有较明显的提高。

Abstract: In order to solve the problems of premature convergence and poor local search on particle swarm optimization (PSO) algorithm, an improved quantum particle swarm optimization(IQPSO) approach was proposed. Based on quantum particle swarm optimization algorithm (QPSO), good-point set was introduced to the approach to initialize initial angle of quantum position, to improve ergodicity of initial population. To make particle jump out of local extreme value point, the chaotic time series numbers were used to update particle velocity. To prevent particle from premature convergence, mutation process was added in the approach. The simulation experiment results show that the improved algorithm has rapid convergence, good stability and it gives better performance than standard particle swarm optimization (SPSO) and quantum particle swarm optimization (QPSO).

详情信息展示

基于佳点集构造的改进量子粒子群优化算法

陈义雄1, 2,梁昔明1, 3,黄亚飞1

(1. 中南大学 信息科学与工程学院,湖南 长沙,410083;2. 湘潭钢铁公司 培训中心,湖南 湘潭,411104;3. 北京建筑工程学院 理学院,北京,100044)

摘 要:针对粒子群优化算法易出现早熟收敛及局部搜索能力不足的特点,提出一种改进的量子粒子群优化算法(IQPSO)。该算法在量子粒子群优化算法(QPSO)的基础上,引入佳点集初始化量子的初始角位置,提高初始种群的遍历性;在粒子角速度位置更新中,采用混沌时间序列数,促使粒子跳出局部极值点;为避免粒子陷入早熟收敛,在算法中加入变异处理。仿真实验结果表明:与标准粒子群优化(SPSO)算法和量子粒子群优化(QPSO)算法比较,提出的算法具有快速的收敛能力、良好的稳定性,其优化性能有较明显的提高。

关键词:粒子群优化;混沌;早熟收敛;佳点集;量子粒子群优化

Improved quantum particle swarm optimization based on good-point set

CHEN Yixiong1, 2, LIANG Ximing1, 3, HUANG Yafei1

(1. School of Information Science and Engineering, Central South University, Changsha 410083, China;2. Training Center, Xiangtan Iron & Steel Co. Ltd., Xiangtan 411104, China;3. School of Science, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

Abstract:In order to solve the problems of premature convergence and poor local search on particle swarm optimization (PSO) algorithm, an improved quantum particle swarm optimization(IQPSO) approach was proposed. Based on quantum particle swarm optimization algorithm (QPSO), good-point set was introduced to the approach to initialize initial angle of quantum position, to improve ergodicity of initial population. To make particle jump out of local extreme value point, the chaotic time series numbers were used to update particle velocity. To prevent particle from premature convergence, mutation process was added in the approach. The simulation experiment results show that the improved algorithm has rapid convergence, good stability and it gives better performance than standard particle swarm optimization (SPSO) and quantum particle swarm optimization (QPSO).

Key words:particle swarm optimization; chaos; premature convergence; good-point set; quantum particle swarm optimization

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号