简介概要

Luminescence characteristics of Ca4YO(BO33 doped with Bi3+,Dy3+ and Pr3+ ions

来源期刊:Journal of Rare Earths2010年第1期

论文作者:田莲花

文章页码:37 - 39

摘    要:The photoluminescence(PL) properties of Ca4YO(BO3)3 doped with Bi3+,Dy3+,and Pr3+ ions were investigated.These compounds were prepared using a typical solid-state reaction.The excitation and emission spectra were measured using a spectrofluorometer.For Ca4YO(BO3)3:Bi3+,the excitation spectrum showed the bands at about 228,309,and 370 nm which correspond to the 1S0→1P1 transition and the 1S0→3P1 transition of Bi3+ ions.The emission band at 390 nm corresponded to the 3P1→1S0 transition of Bi3+ ions.For Ca4YO(BO3)3:Bi3+,Dy3+,energy transfer occurred from Bi3+ to Dy3+ somewhat.In Ca4YO(BO3)3:Bi3+,Dy3+,Pr3+,the excitation band at 367 nm was enhanced obviously due to the energy migration from Bi3+ to Pr3+,which converted efficiently the emission of semiconductor InGaN based light-emitting diode(LED).Therefore,the emission of Dy3+ ions was enhanced due to the energy migration from the process of Bi3+→Pr3+→Dy3+.It resulted in the good color rendering.

详情信息展示

Luminescence characteristics of Ca4YO(BO33 doped with Bi3+,Dy3+ and Pr3+ ions

田莲花

Department of Physics,Yanbian University

摘 要:The photoluminescence(PL) properties of Ca4YO(BO3)3 doped with Bi3+,Dy3+,and Pr3+ ions were investigated.These compounds were prepared using a typical solid-state reaction.The excitation and emission spectra were measured using a spectrofluorometer.For Ca4YO(BO3)3:Bi3+,the excitation spectrum showed the bands at about 228,309,and 370 nm which correspond to the 1S0→1P1 transition and the 1S0→3P1 transition of Bi3+ ions.The emission band at 390 nm corresponded to the 3P1→1S0 transition of Bi3+ ions.For Ca4YO(BO3)3:Bi3+,Dy3+,energy transfer occurred from Bi3+ to Dy3+ somewhat.In Ca4YO(BO3)3:Bi3+,Dy3+,Pr3+,the excitation band at 367 nm was enhanced obviously due to the energy migration from Bi3+ to Pr3+,which converted efficiently the emission of semiconductor InGaN based light-emitting diode(LED).Therefore,the emission of Dy3+ ions was enhanced due to the energy migration from the process of Bi3+→Pr3+→Dy3+.It resulted in the good color rendering.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号