简介概要

Carrier transportation in polycrystalline CuInSe2 thin films with Cu-deficient grain boundaries

来源期刊:Rare Metals2015年第7期

论文作者:Bo Yin Chao-Gang Lou

文章页码:510 - 516

摘    要:The interface energies and electronic structures of(112) grain boundaries of Cu In Se2 thin films were investigated by first-principle calculations.It is found that the grain boundary with a Cu vacancy has low interface energy and exists widely in the films.The Cu deficiency may cause the charge imbalance and result in an upward band bending at the grain boundary.It also weakens the repulsion between Cu-3d orbital and Se-4p orbital and leads to the downward shift of valence band maximum.The two mechanisms,namely the band bending from the charge imbalance and the depression of the valence band maximum, have effects on the(112) grain boundaries with different defects.The change of band structure forms a potential barrier to prevent electrons or holes from approaching the grain boundary and reduces their recombination.This might be used to explain the effects of the grain boundary on carrier transportation and why polycrystalline Cu(In,Ga)Se2thin film solar cells have better performance than single-crystal cells.

详情信息展示

Carrier transportation in polycrystalline CuInSe2 thin films with Cu-deficient grain boundaries

Bo Yin,Chao-Gang Lou

School of Electronic Science and Engineering, Southeast University

摘 要:The interface energies and electronic structures of(112) grain boundaries of Cu In Se2 thin films were investigated by first-principle calculations.It is found that the grain boundary with a Cu vacancy has low interface energy and exists widely in the films.The Cu deficiency may cause the charge imbalance and result in an upward band bending at the grain boundary.It also weakens the repulsion between Cu-3d orbital and Se-4p orbital and leads to the downward shift of valence band maximum.The two mechanisms,namely the band bending from the charge imbalance and the depression of the valence band maximum, have effects on the(112) grain boundaries with different defects.The change of band structure forms a potential barrier to prevent electrons or holes from approaching the grain boundary and reduces their recombination.This might be used to explain the effects of the grain boundary on carrier transportation and why polycrystalline Cu(In,Ga)Se2thin film solar cells have better performance than single-crystal cells.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号