简介概要

Steady-State Creep Behavior of Super304H Austenitic Steel at Elevated Temperatures

来源期刊:Acta Metallurgica Sinica2015年第11期

论文作者:Ping Ou Long Li Xing-Fei Xie Jian Sun

文章页码:1336 - 1343

摘    要:Creep behavior of Super304 H austenitic steel has been investigated at elevated temperatures of 923-973 K and at applied stress of 190-210 MPa.The results show that the apparent stress exponent and activation energy in the creep deformation range from 16.2 to 27.4 and from 602.1 to 769.3 kJ/mol at different temperatures,respectively.These high values imply the presence of a threshold stress due to an interaction between the dislocations and Cu-rich precipitates during creep deformation.The creep mechanism is associated with the dislocation climbing governed by the matrix lattice diffusion.The origin of the threshold stress is mainly attributed to the coherency strain induced in the matrix by Cu-rich precipitates.The theoretically estimated threshold stresses from Cu-rich precipitates agree reasonably with the experimental results.

详情信息展示

Steady-State Creep Behavior of Super304H Austenitic Steel at Elevated Temperatures

Ping Ou1,2,Long Li1,Xing-Fei Xie1,Jian Sun1

1. Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming,School of Materials Science and Engineering,Shanghai Jiaotong University2. School of Materials Science and Engineering,Jiangxi University of Science and Technology

摘 要:Creep behavior of Super304 H austenitic steel has been investigated at elevated temperatures of 923-973 K and at applied stress of 190-210 MPa.The results show that the apparent stress exponent and activation energy in the creep deformation range from 16.2 to 27.4 and from 602.1 to 769.3 kJ/mol at different temperatures,respectively.These high values imply the presence of a threshold stress due to an interaction between the dislocations and Cu-rich precipitates during creep deformation.The creep mechanism is associated with the dislocation climbing governed by the matrix lattice diffusion.The origin of the threshold stress is mainly attributed to the coherency strain induced in the matrix by Cu-rich precipitates.The theoretically estimated threshold stresses from Cu-rich precipitates agree reasonably with the experimental results.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号