网络首发时间: 2015-11-06 15:10
稀有金属 2016,40(05),446-452 DOI:10.13373/j.cnki.cjrm.2016.05.007
La_(0.67)Ca_(0.33-x)Ba_xMnO_3的电输运性质反常及磁电阻温度稳定性
李莉 王桂英 罗鹏 彭振生
宿州学院自旋电子与纳米材料安徽省重点实验室
宿州学院机械与电子工程学院
摘 要:
用固相反应法制备La_(0.67)Ca_(0.33-x)Ba_xMn O_3(x=0,0.10,0.15,0.20,0.25)系列样品,烧结温度为1200℃。通过X射线衍射(XRD)图谱,扫描电子显微镜(SEM)照片、零场和加场下的电阻率-温度(ρ-T)曲线,磁电阻-温度(MR-T)曲线,研究Ba~(2+)替代Ca~(2+)的La_(0.67)Ca_(0.33-x)Ba_xMnO_3的电输运性质及磁电阻温度稳定性。结果表明:随Ba~(2+)替代量的改变晶体结构发生变化,x=0的样品为立方结构,x=0.10的样品为正交结构,x=0.15,0.20,0.30的样品为六方结构。x=0.10样品的电输运性质出现反常,它的电阻率不仅比未掺Ba的La_(0.67)Ca_(0.33)Mn O_3高出60倍,也比高掺Ba样品的电阻率高出几倍,随Ba~(2+)替代量的增加电阻率逐渐下降,用掺Ba引起的晶格结构变化及Mn O_6八面体畸变进行解释;高掺Ba样品实现了室温附近磁电阻温度稳定性,x=0.15的样品在187~246 K温区磁电阻为(8.91±0.42)%,x=0.20的样品在230~290 K温区磁电阻为(6.07±0.32)%,x=0.25的样品在320 K以下直至50 K温区磁电阻均大于14%。在0.8 T磁场下在室温附近产生磁电阻的温度稳定性有利于MR效应的实际应用。磁电阻温度稳定性机制是,钙钛矿的磁电阻是体相内双交换作用产生的本征磁电阻与界面自旋相关散射或自旋极化隧穿产生的低场磁电阻的叠加,制备样品时控制烧结温度(1200℃),尽量提高低场磁电阻,两种磁电阻叠加产生磁电阻温度稳定性。
关键词:
电输运性质;磁电阻温度稳定性;钙钛矿锰氧化物;
中图分类号: O482.5
作者简介:李莉(1978-),女,安徽六安人,硕士,研究方向:磁性材料;E-mail:986676608@qq.com;;彭振生,教授;电话:13855706737;E-mail:ahpengzhsh1948@126.com;
收稿日期:2015-09-14
基金:国家自然科学基金重点项目(19934003);安徽省教育厅自然科学研究重点项目(KJ2013A245);宿州学院科研平台开放课题(2014YKF49,2014YKF48);安徽省优秀青年人才支持计划重点项目(gxyq ZD2016341)资助;
Abnormal Electric Transport Property and Temperature Stability of Magnetoresistance in La_(0.67)Ca_(0.33-x)Ba_xMnO_3
Li Li Wang Guiying Luo Peng Peng Zhensheng
Anhui Key Laboratory of Spintronic and Nanometric Materials,Suzhou University
School of Mechanical and Electronic Engineering,Suzhou University
Abstract:
La_(0.67)Ca_(0.33- x)Ba_xMnO_3( x = 0,0. 10,0. 15,0. 20,0. 25) samples were prepared by solid state reaction method,and the sintering temperature was 1200 ℃. Electric transport property and temperature stability of magnetoresistance in La_(0.67)Ca_(0.33- x)Ba_xMnO_3 in which part Ca~(2+)was substituted by Ba~(2+)were studied through X-ray diffraction( XRD) patterns,scanning electron microscope( SEM) images,resistivity-temperature( ρ-T) curves in zero field and applied magnetic field,and magnetoresistance-temperature( MR-T) curves. The results indicated that the crystal structure changed with the variation of Ba~(2+)substitution amount,the sample with x = 0 was of cubic structure,the sample with x = 0. 10 was of orthogonal structure,and the samples with x = 0. 15,0. 20,0. 30 were of hexagonal structure. The electric transport property of the sample with x = 0. 10 exhibited abnormality,and its resistivity was not only 60 times as large as that of La_(0.67)Ca_(0. 33) Mn O_3without Ba doping but also several times as large as that of the samples with higher Ba doping,then the resistivity gradually decreased with the increase of Ba~(2+)substitution amount,and this could be explained by the lattice structure change and the distortion of MnO_6 octahedron induced by Ba doping; the temperature stability of magnetoresistance near room temperature was realized in the samples with high Ba doping,magnetoresistance of the sample with x = 0. 15 was( 8. 91 ±0. 42) % in the temperature range of 187 ~ 246 K,that of the sample with x = 0. 20 was( 6. 07 ± 0. 32) % in the temperature range of 230 ~ 290 K,and that of the sample with x = 0. 25 was larger than 14% below 320 K and above 50 K. The temperature stability of magnetoresistance near room temperature in the magnetic field of 0. 8 T was advantageous to the practical application of MR effect. The mechanism of the temperature stability of magnetoresistance was that,the magnetoresistance of perovskite was the superposition of intrinsic magnetoresistance induced by the double exchange function in body phase and low-field magnetoresistance induced by boundary spin-dependent scattering or spin polarized tunneling. The sintering temperature of the samples preparation was strictly controlled at1200 ℃,and the low-field magnetoresistance was promoted as high as possible,then the superposition of the two kinds of magnetoresistance could lead to the temperature stability of magnetoresistance.
Keyword:
electric transport property; temperature stability of magnetoresistance; perovskite manganite;
Received: 2015-09-14
钙钛矿锰氧化物中的庞磁电阻(colossal magnetoresistance)效应,在磁存储、磁传感、磁制冷、红外成像以及自旋阀等领域有着诱人的应用前景,因而受到凝聚态物理和材料物理科研人员广泛关注[1,2,3]。然而,庞磁电阻只出现在绝缘体-金属(I-M)相变温度TP附近狭窄温区,当温度T>Tp,随温度升高MR(magnetoresistance)迅速下降;当T<Tp,随温度下降MR也迅速下降,磁电阻对温度敏感不利于MR效应的实际应用。
科研人员对磁电阻的温度稳定性不断进行探索,人们采用以居里温度较高的钙钛矿锰氧化物为母体,与绝缘体氧化物(或金属)复合制备二相复合体[4,5,6],采用A位多种元素(3种以上)掺杂[7,8,9]。利于界面效应提高低场磁电阻,本征磁电阻与低场磁电阻叠加获得磁电阻的温度稳定性。
本文选用La0.67Ca0.33Mn O3为母体,用离子半径较大的Ba2+替代离子半径较小的Ca2+,研究La0.67Ca0.33-xBaxMn O3体系的电输运性质及磁电阻的温度稳定性。结果使人振奋,实现了室温附近磁电阻温度稳定性,特别是x=0.25的样品,在320~50 K温区,MR均大于14%。在如此宽的温区磁电阻随温度变化缓慢,有利于磁电阻效应的实际应用。
1 实验
用传统的固相反应法制备La0.67Ca0.33-xBaxMn O3(x=0,0.10,0.15,0.20,0.25)系列样品。选用分析纯的La2O3,Ca CO3,Ba CO3,Mn O2化学试剂,在称量前先将La2O3在600℃下烧结6 h以除去水分。按照名义组分进行配料,在研钵中充分混合、研磨,倒入刚玉坩埚中,再放入马弗炉中,在900℃下烧结24 h,样品自然冷却后从马弗炉中取出,仔细研磨,在1100℃下烧结24 h,最后再仔细研磨,26 MPa下压成直径10 mm、厚约1 mm的圆片,在1200℃下烧结24 h。自然冷却后从马弗炉中取出,切割成长条状块材。
用中国丹东方圆仪器有限公司生产的X射线衍仪(XRD,DX-2600)测出XRD图谱,采用粉末衍射。用日本日立有限公司生产的扫描电子显微镜(SEM,SU1510),做出SEM照片。用北京东方晨景科技有限公司生产的电输运测试系统(ET-9000),采用传统的四引线法测量零场冷和加场冷(H=0.8 T)的电阻率随温度变化,外加磁场与电流垂直,测试电流为10 m A,测量温区为50~320 K。
2 结果与讨论
图1是La0.67Ca0.33-xBaxMn O3的XRD图谱。可以看出,所有样品都呈现单相钙钛矿结构,没有杂相出现,说明Ba离子已进入钙钛矿结构。随着Ba替代量的变化,晶体结构发生了变化。对比x=0和x=0.25的样品,衍射峰的位置发生了变化(图1(b))。利用Jade5.0软件进行全谱似合,晶胞参数列于表1中。从表1可以看出,随Ba2+替代量的改变晶体结构发生变化,x=0的样品为立方结构,x=0.10的样品为正交结构,x=0.15,0.20,0.30的样品为六方结构,与阮永红等[10]检测结果基本一致,但与字正华等[11]检测结果略有不同,字正华检测结果是x≥0.20时,样品由正交结构转变为六方结构,这是因为样品制备条件不同,其最后的烧结温度为1400℃,烧结时间20 h;本文是在1200℃下烧结24 h。烧结温度会影响晶体的结构,唐永刚等[12]指出烧结温度低的样品呈六方结构。烧结温度高的样品呈单斜结构。董帅和刘俊明等[13]指出烧结温度会影响晶体的结构相变。孙阳[14]也指出掺杂稀土锰氧化物的晶体结构不仅与掺杂元素及掺杂量有关,而且随温度变化。
图1 La0.67Ca0.33-xBaxMn O3的XRD图谱Fig.1 XRD patterns of La0.67Ca0.33-xBaxMn O3samples(a)and magnified XRD patterns of La0.67Ca0.33-xBaxMn O3samples(b)
表1 La0.67Ca0.33-xBaxMn O3的晶胞参数Table 1 Cell parameters of La0.67Ca0.33-xBaxMn O3samples with different sintering temperatures 下载原图
表1 La0.67Ca0.33-xBaxMn O3的晶胞参数Table 1 Cell parameters of La0.67Ca0.33-xBaxMn O3samples with different sintering temperatures
图2 SEM照片可以看出,所有样品颗粒比较均匀,粒径小于3μm。x=0.10样品颗粒边界比较清晰,颗粒间间隙较大。
图3是La0.67Ca0.33-xBaxMn O3的电阻率-温度(ρ-T)曲线。可以看出:(1)所有样品均发生缘绝体—金属(I-M)相变,相变温度Tp及电阻率的极大值ρmax列于表2中;(2)x=0.10样品的电输运性质出现反常,它的电阻率既比未掺Ba样品的大,也比其他掺Ba样品的高;(3)所有掺Ba样品的电阻率随Ba含量增大而逐渐减小;(4)所有样品在测量温区加场下的电阻率小于零场下的电阻率,产生磁电阻效应。
x=0.10样品的电阻率出现反常,首先从晶体结构进行探讨。结合XRD检测结果(图1),x=0样品为立方结构,x=0.10样品为正交结构,0.15≤x≤0.25为六方结构。对于立方结构,Mn-O键在各个方向一致,Mn-O-Mn键角为180°,有利于双交换,所以x=0样品的电阻率较小;对于正交结构,Mn-O键在a,b,c 3个方向各不相同,Mn-O-Mn键角偏离180°,不利于双交换,所以x=0.10样品的电阻率是x=0样品的60倍;对于六方结构,Mn-O键在各个方向趋于一致,Mn-O-Mn键角随Ba含量增大而增大,所以随Ba含量增大电阻率减小。
从图2的SEM照片还可以看出,x=0.10样品与其他样品不同,晶界比较清晰,晶粒之间间隙较大,当巡游电子从一个颗粒向另一个颗粒跃迁时,有些地方晶粒之间间隔大于电子跃迁的自由程,所以x=0.10样品的电阻率猛增。
x=0.10样品的电阻率出现反常,还要从Mn O6八面体畸变进行探讨。钙钛矿(结构式为ABO3)晶格发生畸变有两个原因,一是Mn3+的d4电子发生Jahn-Teller不稳定性,使Mn O6八面体发生畸变,另一个原因是A-O层与B-O层的晶格不匹配[15]。所有样品中,Mn3+/Mn4+比值不变,不考虑Jahn-Teller效应的影响,只探讨A-O层与B-O层晶格不匹配引起的晶格畸变对电输运性质的影响。由于Ba2+半径较大
,比Ca2+
大35%,少量(x=0.10)Ba2+替代Ca2+,使Mn O6八面体在某个面受Ba2+挤压,发生畸变,影响双交换,使电阻率升高。随着Ba2+替代量增大,Mn O6八面体受Ba2+的作用逐渐均衡,畸变减小,所以随Ba含量增大电阻率减小。
图2 La0.67Ca0.33-xBaxMn O3的SEM照片Fig.2 SEM images of La0.67Ca0.33-xBaxMn O3
(a)x=0;(b)x=0.10;(c)x=0.15;(d)x=0.20;(e)x=0.25
图3 La0.67Ca0.33-xBaxMn O3的ρ-T曲线Fig.3ρ-T curves of La0.67Ca0.33-xBaxMn O3
(a)x=0;(b)x=0.10,0.15;(c)x=0.20,0.25
表2 La0.67Ca0.33-xBaxMn O3的Tp,ρmax随x变化关系Table 2Changes of Tp,ρmaxwith x for La0.67Ca0.33-xBaxMn O3 下载原图
表2 La0.67Ca0.33-xBaxMn O3的Tp,ρmax随x变化关系Table 2Changes of Tp,ρmaxwith x for La0.67Ca0.33-xBaxMn O3
图4是La0.67Ca0.33-xBaxMn O3的磁电阻-温度(MR-T)曲线。磁电阻的定义
图4 La0.67Ca0.33-xBaxMn O3的MR-T曲线Fig.4 MR-T curves of La0.67Ca0.33-xBaxMn O3samples
(a)x=0,0.10,0.15;(b)x=0.20,0.25
式中ρ(0,T)是零场下的电阻率,ρ(H,T)是加场下的电阻率。
从图4可以看出:(1)x=0样品在Tp附近(Tp=267 K)出现一个尖锐的磁电阻峰,这是钙钛矿本征磁电阻特征,所有掺Ba样品在Tp附近的磁电阻峰消失;(2)所有样品在210 K以下,随温度降低磁电阻持续增大,这是低场磁电阻特征[16];(3)x=0.15的样品在187~246 K温区磁电阻为(8.91±0.42)%,x=0.20的样品在230~290 K温区磁电阻为(6.07±0.32)%,这两个样品的磁电阻基本不随温度变化,x=0.25的样品在测量温区磁电阻均大于14%。
钙钛矿颗粒分为体相和表面相[17]。体相内自旋电子的输运主要是双交换作用,未加外磁时Mn离子的磁矩之间有一定夹角,影响电子输运,呈高电阻,当外加磁场时,Mn离子的磁矩沿外磁场方向取向,夹角趋于0°,有利于双交换,呈低电阻,产生磁电阻,这种磁电阻称本征磁电阻。本征磁电阻出现在Tp附近,当温度T高于Tp和低于Tp,随温度升高或降低,磁电阻迅速减小,呈现一个尖峰,温区很狭窄。掺Ba样品由于发生了晶格畸变,当外加磁场时Mn离子的磁矩转向困难,抑制了本征磁电阻,所以掺Ba样品在Tp附近没有出现本征磁电阻峰。表面相产生的磁电阻称低场磁电阻(LFMR,low-field magnetoresistance)[18]。低场磁电阻是自旋电子受到自旋相关散射或自旋极化隧穿引起的[19,20]。掺Ba样品A-O层与B-O层不匹配,晶格发生扭曲,降低了晶体的对称性,使所受应力减小[14]。表面应力减小,使颗粒表面处于无序状态的磁矩,在外磁场作用下容易取向,变为磁有序,减小了表面对自旋电子的散射,出现低电阻,产生较大低场磁电阻。在实验时烧结温度较低(1200℃),使颗粒较小,突显界面效应,提高低场磁电阻。样品的磁电阻是本征磁电阻与低场磁电阻的叠加[12]。x=0.15的样品,在187~246 K温区磁电阻为(8.91±0.42)%;x=0.20的样品,在230~290 K温区磁电阻为(6.07±0.32)%;x=0.25的样品,在320 K以下直至50 K,磁电阻均大于14%。在室温附近产生磁电阻的温度稳定性,有利于MR效应的实际应用。
3 结论
用固相反应法制备La0.67Ca0.33-xBaxMn O3(x=0,0.10,0.15,0.20,0.25)系列样品,研究Ba2+替代Ca2+对电输运性质及磁电阻的影响,结论如下:
1.x=0.10样品的电输运性质出现反常,它的电阻率是未掺Ba样品的60倍,也比高掺Ba样品的电阻率高出几倍。这是由于掺Ba引起的晶体结构变化及Mn O6八面体畸变。
2.实现了室温附近磁电阻的温度稳定性。x=0.15的样品,在187~246 K温区磁电阻为(8.91±0.42)%;x=0.20样品,在230~290 K温区磁电阻为(6.07±0.32)%;x=0.25的样品,在320 K以下直至50 K,磁电阻均大于14%。在0.8 T磁场下在室温附近产生如此高的磁电阻,且在较宽温区产生MR的温度稳定性,有利于MR的实际应用。
3.实现磁电阻温度稳定性的方法:钙钛矿颗粒的磁电阻是体相产生的本征磁电阻与界面效应产生的低场磁电阻叠加,制备样品时烧结温度低些(1200℃),使钙钛矿颗粒小些,增多界面,提高低场磁电阻,本征磁电阻与低场磁电阻叠加可以实现室温附近磁电阻温度稳定性。
参考文献
[1] Anwar M S,Bon Heun Koo.Enhanced refrigeration capacity and magnetic entropy change in La0.55Ce0.15Sr0.3Mn O3manganite[J].Electron.Mater.Lett.,2015,11(4):614.
[2] Khelifi J,Tozri A,Dhahri E.The influence of disorder on magnetocaloric effect and the order of transition in ferromagnetic manganite(La1-xNdx)2/3(Ca1-ySry)1/3Mn O3[J].Appl.Phys.A,2014,116(2):1041.
[3] Yang L Q,Yang X S,LüL,Zhang M,Wei Z T,Zhao Y.Non-temperature-sensitive and large low-field magnetoresistance in bonded perovskite manganite composites[J].J.Supercond.Nov.Magn.,2013,26(8):2993.
[4] Liu P,Wang G Y,Mao Q,Liu N,Peng Z S.Electric transport mechanism and magnetoresistance of La0.80Sr0.15Ag0.05Mn O3/x(Cu O)[J].Chinese Rare Earths,2015,34(5):329.
[5] Li L,Wang G Y,Tang Y G,Liu P,Ye W M,Peng Z S.Boundary effect of two-phase composites La2/3Ca1/3Mn O3/x Cu O[J].Chinese Journal of Rare Metals,2015,39(6):510.(李莉,王桂英,唐永刚,刘鹏,叶吾梅,彭振生.二相复合体La2/3Ca1/3Mn O3/x Cu O的界面效应[J].稀有金属,2015,39(6):510.)
[6] Li L,Wang G Y,Mao Q,Liu N,Peng Z S.Temperature stability of electrical transport mechanism and magnetoresistance in the two-phase La0.80Sr0.05Na0.15Mn O3/x Cu O composites[J].Chinese Rare Earths,2014,35(3):82.(李莉,王桂英,毛强,刘宁,彭振生.La0.80Sr0.05Na0.15Mn O3/x Cu O复合体电输运机制及磁电阻的温度稳定性[J].稀土,2014,35(3):82.)
[7] Tang Y G,Wang G Y,Yan G Q,Song Q X,Zhang M Y,Peng Z S.Abnormal electric transport property and magnetoresistance stability of La-Sr-K-Mn-O system[J].Rare Metals,2013,32(3):258.
[8] Wang G Y,Yan G Q,Yang J,Wang W Q,Tang Y G,Song Q X,Zhang M Y,Peng Z S.Magnetoresistance enhancement and temperature stability of magnetoresistance in La1-x(Sr1-yNay)xMn O3[J].Rare Metals,2012,31(4):387.
[9] Tang Y G,Wang G Y,Yang G,Mao Q,Peng Z S.Study on magnetism of Pr0.45(Ca1-xSrx)0.55Mn O3samples[J].Journal of Rare Earths,2011,30(6):595.
[10] Ruan Y H,Wang J S,Xu Z A,Jiao Z K,Zhang Q R.Giant magnetoresistance effect of the La1-xCaxMn O3system[J].Chin.Phys.Soc.,1997,46(7):1415.)(阮永红,王劲松,许祝安,焦正宽,张其瑞.La1-x CaxMn O3的巨磁电阻效应[J].物理学报,1997,46(7):1415.)
[11] Zi Z H,Shi H Y,Zhang S B,Jiang S J,Kan J D,Yuan B,Mo W.An analysis of crystal structure about La2/3Ca1/3-xBaxMn O3materials with the Rietveld method[J].Journal of Chuxiong Teachers,2001,16(3):56.(字正华,施海燕,张树波,将仕级,阚家德,袁波,莫威.La2/3Ca1/3-xBax Mn O3系列稀土锰氧化物Rietveld结构分析[J].楚雄师专学报,2001,16(3):56.)
[12] Tang Y G,Wang G Y,Mao Q,Song Q X,Zhang M Y,Peng Z S.Effect of different sintering temperatures on electrical transport property and magnetoresistance of La22/27Sr1/27K4/27Mn O3[J].J.Chin.Ceram.Soc.,2014,42(9):1111.(唐永刚,王桂英,毛强,宋启祥,张明玉,彭振生.烧结温度对La22/27Sr1/27K4/27Mn O3的电输运性质及磁电阻的影响[J].硅酸盐学报,2014,42(9):1111.)
[13] Dong S,Liu J M.Phase competitions in perovskite manganites:a theoretical review[J].Progress in Physics,2010,30(1):1.(董帅,刘俊明.锰氧化物相竞争的理论研究[J].物理学进展,2010,30(1):1.)
[14] Sun Y.The Large Magnetoresistance Effect in the Perovskite Oxide Structure and Related Property[D].Hefei:University of Science and Technology of China,2001.39.(孙阳.钙钛矿结构氧化物中的超大磁电阻效应及相关物性[D].合肥:中国科学技术大学,2001.39.)
[15] Hong B.The Interaction of Perovskite Manganites Charge Ordering,Orbital Ordering and Spin Ordering[D].Hefei:University of Science and Technology of China,2004.13.(洪波.钙钛矿锰氧化物的电荷序、轨道序、自旋序及其相互作用[D].合肥:中国科学技术大学,2004.13.)
[16] Khare N,Monaril U P,Gupta A K,Raychaudhuri S P.Temperature dependence of magnetoresistance and nonlinear conductance of the bicrystal grain boundary in epitaxial La0.67Ba0.33Mn O3thin films[J].Appl.Phys.Lett.,2002,81(2):325.
[17] Zhang N,Ding W,Zhong W,Bao W,Jin R.Tunneltype giant magnetoresistance in the granul perovskite La0.88Sr0.15Mn O3[J].Phys.Rev.B,1997,56(13):8138.
[18] Hueso L E,Riras J,Rivadulla F,Quintela M A.The exceptional magnetoresistance effect of the composition system La0.9Sr0.1Mn O3/Fe2O3[J].Appl.Phys.,2001,89(3):1746.
[19] Li X W,Gupta A,Xiao G,Qian W,Dravid V P.Low-field magnetoresistive properties of polycrystalline and epitaxial perovskite manganite films[J].Appl.Phys.Lett.,1997,71(7):1124.
[20] Hwang H Y,Cheong S W,Ong N P,Jorgensen J D.Spin-polarized intergrain tunneling in Ln2/3Sr1/3Mn O3[J].Phys.Rev.Lett.,1996,77(10):2041.