简介概要

Mechanical Properties and Fracture Behaviour of Multilayer Alumina Composites

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2015年第5期

论文作者:郑新国 ZHAO Fei 张金咏

文章页码:965 - 967

摘    要:Adopting a ceramic/polymer multilayer structure design to simulate the structure of nacre is usually believed to be an effective way to increase the toughness of ceramic composites at the expense of the material’s bending strength. However, in this study, we found that both the bending strength and the toughness could be improved simultaneously when using a certain Al2O3/Kevlar multilayer composite design compared to pure alumina samples with the same dimensions. The fracture behaviour of the Al2O3/Kevlar multilayer composite was studied to find a reason for this improvement. The results showed that the complex and asymmetrical stresses occurring in the Kevlar-reinforced layers were the main reason for the differences in fracture behaviour. We expect our results to open up new ways for the design of future high performance ceramic composites.

详情信息展示

Mechanical Properties and Fracture Behaviour of Multilayer Alumina Composites

郑新国1,ZHAO Fei2,张金咏2

1. Railway Engineering Research Institute of China Academy of Railway Science2. State Key Lab of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology

摘 要:Adopting a ceramic/polymer multilayer structure design to simulate the structure of nacre is usually believed to be an effective way to increase the toughness of ceramic composites at the expense of the material’s bending strength. However, in this study, we found that both the bending strength and the toughness could be improved simultaneously when using a certain Al2O3/Kevlar multilayer composite design compared to pure alumina samples with the same dimensions. The fracture behaviour of the Al2O3/Kevlar multilayer composite was studied to find a reason for this improvement. The results showed that the complex and asymmetrical stresses occurring in the Kevlar-reinforced layers were the main reason for the differences in fracture behaviour. We expect our results to open up new ways for the design of future high performance ceramic composites.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号