简介概要

基于改进GOA-SVM算法的异常流量识别

来源期刊:湖南科技大学学报自然科学版2019年第4期

论文作者:吕赵明 张颖江

文章页码:90 - 96

关键词:蚱蜢优化算法;模拟退火算法;支持向量机;核函数;异常流量识别;

摘    要:异常流量的准确识别在网络安全中起着重要作用,支持向量机(Support Vector Machine,SVM)已经成功地应用于分类和函数逼近等方面,而核函数参数和惩罚参数(C)的选取对SVM的分类性能起着关键作用.为了提高SVM的分类性能,提出一种基于改进蚱蜢算法优化SVM的异常流量识别方法,命名为SAGOA-SVM.在对蚱蜢算法进行实验研究后发现其局部搜索能力较弱,本文通过引入模拟退火算法和位置偏移机制增强蚱蜢趋向食物源的随机性来改进蚱蜢算法优化SVM参数的性能,从而提高SAGOA-SVM算法对异常流量的识别率.在选取的7个标准UCI数据集上的实验结果表明,所提出的SAGOA-SVM算法有很好的分类精度和性能.

详情信息展示

基于改进GOA-SVM算法的异常流量识别

吕赵明,张颖江

湖北工业大学计算机学院

摘 要:异常流量的准确识别在网络安全中起着重要作用,支持向量机(Support Vector Machine,SVM)已经成功地应用于分类和函数逼近等方面,而核函数参数和惩罚参数(C)的选取对SVM的分类性能起着关键作用.为了提高SVM的分类性能,提出一种基于改进蚱蜢算法优化SVM的异常流量识别方法,命名为SAGOA-SVM.在对蚱蜢算法进行实验研究后发现其局部搜索能力较弱,本文通过引入模拟退火算法和位置偏移机制增强蚱蜢趋向食物源的随机性来改进蚱蜢算法优化SVM参数的性能,从而提高SAGOA-SVM算法对异常流量的识别率.在选取的7个标准UCI数据集上的实验结果表明,所提出的SAGOA-SVM算法有很好的分类精度和性能.

关键词:蚱蜢优化算法;模拟退火算法;支持向量机;核函数;异常流量识别;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号