简介概要

Thermal-stress Simulation of Direct-chill Casting of AZ31 Magnesium Alloy Billets

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2009年第3期

论文作者:胡红军

文章页码:376 - 382

摘    要:Two-dimensional (2D) transient coupled finite element model was developed to compute the temperature and stress field in cast billets, so as to predict the defects of the I-type billets made from AZ31 magnesium alloy and find the causes and solutions for surface cracks and shrinkages during direct-chill (DC) casting process. Method of equivalent specific heat was used in the heat conduction equation. The boundary and initial conditions used for primary and secondary cooling were elucidated on the basis of the heat transfer during the solidification of the billet. The temperature and the thermal-stress fields were simulated with the thermal-structural coupled module of ANSYS software. The influences of casting parameters on the distributions of temperature and stress were studied, which helped optimize the parameters (at pouring temperature of 680 ℃, casting speed of 2 mm/s, heat-transfer coefficient of the second cooling equals to 5 000 W/m2·℃-1). The simulation results of thermal stress and strain fields reveal the formation mechanism of some casting defects, which is favourable for optimizing the casting parameters and obtain high quality billets. Some measures of controlling processes were taken to prevent the defects for direct-chill casting billets.

详情信息展示

Thermal-stress Simulation of Direct-chill Casting of AZ31 Magnesium Alloy Billets

胡红军

摘 要:Two-dimensional (2D) transient coupled finite element model was developed to compute the temperature and stress field in cast billets, so as to predict the defects of the I-type billets made from AZ31 magnesium alloy and find the causes and solutions for surface cracks and shrinkages during direct-chill (DC) casting process. Method of equivalent specific heat was used in the heat conduction equation. The boundary and initial conditions used for primary and secondary cooling were elucidated on the basis of the heat transfer during the solidification of the billet. The temperature and the thermal-stress fields were simulated with the thermal-structural coupled module of ANSYS software. The influences of casting parameters on the distributions of temperature and stress were studied, which helped optimize the parameters (at pouring temperature of 680 ℃, casting speed of 2 mm/s, heat-transfer coefficient of the second cooling equals to 5 000 W/m2·℃-1). The simulation results of thermal stress and strain fields reveal the formation mechanism of some casting defects, which is favourable for optimizing the casting parameters and obtain high quality billets. Some measures of controlling processes were taken to prevent the defects for direct-chill casting billets.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号