简介概要

Influence of Zirconium Addition on Magnetic Properties and Temperature Coefficient for Nanocomposite Nd10Fe78.5-xCo5ZrxB6.5 Magnets

来源期刊:Journal of Rare Earths2007年第S2期

论文作者:张士岩 徐晖 谭晓华 倪建森 董远达

文章页码:121 - 124

摘    要:The influence of Zr addition on magnetic properties and temperature coefficient for nanocomposite Nd10Fe78.5-xCo5ZrxB6.5 (x=0~4) bonded magnets was investigated. It was found that the room-temperature magnetic properties were remarkably improved with Zr addition due to the grain refinement and increasing volume fraction of the hard magnetic phase. The optimal magnetic properties of Jr=0.689 T, iHc=769.4 kA·m-1 and (BH)max=84 kJ·m-3 were obtained for 2.5% Zr addition. The temperature coefficient of remanence (α) increases slightly and the temperature coefficient of coercivity (β) decreases obviously with increasing Zr content for nanocomposite Nd10Fe78.5-xCo5ZrxB6.5 (x=0~4) bonded magnets.

详情信息展示

Influence of Zirconium Addition on Magnetic Properties and Temperature Coefficient for Nanocomposite Nd10Fe78.5-xCo5ZrxB6.5 Magnets

张士岩,徐晖,谭晓华,倪建森,董远达

摘 要:The influence of Zr addition on magnetic properties and temperature coefficient for nanocomposite Nd10Fe78.5-xCo5ZrxB6.5 (x=0~4) bonded magnets was investigated. It was found that the room-temperature magnetic properties were remarkably improved with Zr addition due to the grain refinement and increasing volume fraction of the hard magnetic phase. The optimal magnetic properties of Jr=0.689 T, iHc=769.4 kA·m-1 and (BH)max=84 kJ·m-3 were obtained for 2.5% Zr addition. The temperature coefficient of remanence (α) increases slightly and the temperature coefficient of coercivity (β) decreases obviously with increasing Zr content for nanocomposite Nd10Fe78.5-xCo5ZrxB6.5 (x=0~4) bonded magnets.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号