简介概要

基于灰色二次回归的轴温预测模型

来源期刊:机械设计与制造2020年第10期

论文作者:王超 邹益胜 邓佳林 罗怡澜

文章页码:37 - 41

关键词:轴温;预测;灰色二次回归;灰色理论;高速列车;

摘    要:轴承温度实时监控和预测是保障高速列车安全运行的重要手段。GM(1,1)模型具有建模样本量小、计算效率和精度高等优点,适用于轴温的实时预测。但在基于GM(1,1)模型的轴温预测中存在两个问题:1.用于建模的轴温监测数据是离散整型,平滑性欠佳,导致预测精度不高;2.由于GM(1,1)模型在本质上是指数函数,具有单调性,导致在轴温升降趋势变化的拐点处预测误差较大。为此,提出一种基于灰色二次回归的轴温实时预测模型:首先将采集到的轴温数据进行迭代三次的滑动平均处理,再将GM(1,1)模型和二次多项式进行融合重构,并采用最小二乘法求取重构后模型的参数值。应用该模型对某高速列车的后序5分钟轴温进行实时预测,结果表明:在轴温先升后降、先降后升和连续波动的样本中该模型比GM(1,1)模型的预测误差分布更集中且数值更小;在不同通道类型的连续波动样本中,这里模型的预测结果均好于GM(1,1)模型,验证了模型的通用性。

详情信息展示

基于灰色二次回归的轴温预测模型

王超,邹益胜,邓佳林,罗怡澜

西南交通大学机械工程学院先进设计与制造研究所

摘 要:轴承温度实时监控和预测是保障高速列车安全运行的重要手段。GM(1,1)模型具有建模样本量小、计算效率和精度高等优点,适用于轴温的实时预测。但在基于GM(1,1)模型的轴温预测中存在两个问题:1.用于建模的轴温监测数据是离散整型,平滑性欠佳,导致预测精度不高;2.由于GM(1,1)模型在本质上是指数函数,具有单调性,导致在轴温升降趋势变化的拐点处预测误差较大。为此,提出一种基于灰色二次回归的轴温实时预测模型:首先将采集到的轴温数据进行迭代三次的滑动平均处理,再将GM(1,1)模型和二次多项式进行融合重构,并采用最小二乘法求取重构后模型的参数值。应用该模型对某高速列车的后序5分钟轴温进行实时预测,结果表明:在轴温先升后降、先降后升和连续波动的样本中该模型比GM(1,1)模型的预测误差分布更集中且数值更小;在不同通道类型的连续波动样本中,这里模型的预测结果均好于GM(1,1)模型,验证了模型的通用性。

关键词:轴温;预测;灰色二次回归;灰色理论;高速列车;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号