Electrochemical formation of Mg-Li-Y alloys by co-deposition of magnesium, lithium and yttrium ions in molten chlorides
来源期刊:JOURNAL OF RARE EARTHS2012年第10期
论文作者:薛云 颜永得 张密林 韩伟 张志俭
文章页码:1048 - 1054
摘 要:An electrochemical approach for the preparation of Mg-Li-Y alloys via co-reduction of Mg, Li, and Y on a molybdenum electrode in LiCl-KCl-MgCl2-YCl3 melts at 943 K was investigated. Cyclic voltammograms (CVs) illuminated that the underpotential deposition (UPD) of yttrium on pre-deposited magnesium led to the formation of a liquid Mg-Y alloy, and the succeeding underpotential deposition of lithium on pre-deposited Mg-Y led to the formation of a liquid Mg-Li-Y alloy. Chronopotentiometry measurements indicated that the order of electrode reactions was as follows: discharge of Mg(II) to Mg-metal, electroreduction of Y on the surface of Mg with formation of ε-Mg24+xY5 and after that the discharge of Li+ with the deposition of Mg-Li-Y alloys. X-ray diffraction (XRD) indicated that Mg-Li-Y alloys with different phases were formed via galvanostatic electrolysis. The microstructure of different phases of Mg-Li-Y alloys was characterized by optical microscope (OM) and scanning electron microscopy (SEM). The analysis results of inductively coupled plasma atomic emission spectrometer (ICP-AES) showed that the chemical compositions of Mg-Li-Y alloys corresponded with the phase structures of the XRD patterns, and the lithium and yttrium contents of Mg-Li-Y alloys depended on the concentrations of MgCl2 and YCl3 .
薛云1,2,颜永得1,2,张密林2,韩伟2,张志俭1
1. Key Discipline Laboratory of Nuclear Safety and Simulation Technology, Harbin Engineering University2. Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University
摘 要:An electrochemical approach for the preparation of Mg-Li-Y alloys via co-reduction of Mg, Li, and Y on a molybdenum electrode in LiCl-KCl-MgCl2-YCl3 melts at 943 K was investigated. Cyclic voltammograms (CVs) illuminated that the underpotential deposition (UPD) of yttrium on pre-deposited magnesium led to the formation of a liquid Mg-Y alloy, and the succeeding underpotential deposition of lithium on pre-deposited Mg-Y led to the formation of a liquid Mg-Li-Y alloy. Chronopotentiometry measurements indicated that the order of electrode reactions was as follows: discharge of Mg(II) to Mg-metal, electroreduction of Y on the surface of Mg with formation of ε-Mg24+xY5 and after that the discharge of Li+ with the deposition of Mg-Li-Y alloys. X-ray diffraction (XRD) indicated that Mg-Li-Y alloys with different phases were formed via galvanostatic electrolysis. The microstructure of different phases of Mg-Li-Y alloys was characterized by optical microscope (OM) and scanning electron microscopy (SEM). The analysis results of inductively coupled plasma atomic emission spectrometer (ICP-AES) showed that the chemical compositions of Mg-Li-Y alloys corresponded with the phase structures of the XRD patterns, and the lithium and yttrium contents of Mg-Li-Y alloys depended on the concentrations of MgCl2 and YCl3 .
关键词: