输送带煤流量短时预测方法研究
来源期刊:工矿自动化2019年第4期
论文作者:冯梅 乔铁柱
文章页码:72 - 76
关键词:矿用带式输送机;煤流量短时预测;带速与运量匹配;回归预测;支持向量机;因变量;自变量;
摘 要:对煤流量短时间内的趋势进行预测,是实现带速与运量匹配的前提条件,而现有输送带煤流量短时预测方法存在实时性不好和精度不高的问题。针对上述问题,提出了一种基于支持向量机的输送带煤流量短时预测方法。该方法首先利用支持向量机算法选择实时煤流量作为因变量、统计数据时间作为自变量,然后对实际采集到的煤流量数据进行归一化处理,利用交叉验证方法选择出最优的参数,利用最优参数训练支持向量机,拟合出理想的短时间内煤流量预测曲线,最后通过进一步对比拟合均方误差、相关系数等预测指标来分析煤流量预测曲线与原始数据曲线的拟合程度,得到最佳预测曲线。Matlab仿真结果表明,该方法能够较好地预测输送带短时间内的煤流量,预测数据与真实值之间的偏差很小,均方误差为0.000 152 563,相关系数为99.784 8%。
冯梅,乔铁柱
太原理工大学新型传感器与智能控制教育部重点实验室
摘 要:对煤流量短时间内的趋势进行预测,是实现带速与运量匹配的前提条件,而现有输送带煤流量短时预测方法存在实时性不好和精度不高的问题。针对上述问题,提出了一种基于支持向量机的输送带煤流量短时预测方法。该方法首先利用支持向量机算法选择实时煤流量作为因变量、统计数据时间作为自变量,然后对实际采集到的煤流量数据进行归一化处理,利用交叉验证方法选择出最优的参数,利用最优参数训练支持向量机,拟合出理想的短时间内煤流量预测曲线,最后通过进一步对比拟合均方误差、相关系数等预测指标来分析煤流量预测曲线与原始数据曲线的拟合程度,得到最佳预测曲线。Matlab仿真结果表明,该方法能够较好地预测输送带短时间内的煤流量,预测数据与真实值之间的偏差很小,均方误差为0.000 152 563,相关系数为99.784 8%。
关键词:矿用带式输送机;煤流量短时预测;带速与运量匹配;回归预测;支持向量机;因变量;自变量;