简介概要

Rheological Behaviors and Processing Windows of Low Viscosity Epoxy Resin for VIMP

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2011年第5期

论文作者:刘卓峰

文章页码:931 - 934

摘    要:The chemorheological behaviors of a low viscosity epoxy resin system (Huntsman 1564/3486) for vacuum infusion moulding process (VIMP) were studied with viscosity experiments.The dual-Arrhenius rheological model and the engineering viscosity model were established and compared with the experimental data.The result showed that the viscosity in the earlier stage calculated by dual-Arrhenius model were smaller than the experimental data,while the data calculated by the engineering model were larger.Combining the two models together can predict the rheological behaviors of the resin system in a more credible manner.The processing windows of the resin system for VIMP were determined based on the two models.The optimum processing temperature is 30-45 ℃.

详情信息展示

Rheological Behaviors and Processing Windows of Low Viscosity Epoxy Resin for VIMP

刘卓峰

College of Aerospace and Material Engineering,National University of Defense Technology

摘 要:The chemorheological behaviors of a low viscosity epoxy resin system (Huntsman 1564/3486) for vacuum infusion moulding process (VIMP) were studied with viscosity experiments.The dual-Arrhenius rheological model and the engineering viscosity model were established and compared with the experimental data.The result showed that the viscosity in the earlier stage calculated by dual-Arrhenius model were smaller than the experimental data,while the data calculated by the engineering model were larger.Combining the two models together can predict the rheological behaviors of the resin system in a more credible manner.The processing windows of the resin system for VIMP were determined based on the two models.The optimum processing temperature is 30-45 ℃.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号