基于互信息的主成分分析特征选择算法
来源期刊:控制与决策2013年第6期
论文作者:范雪莉 冯海泓 原猛
文章页码:915 - 919
关键词:互信息;主成分分析;特征选择;
摘 要:主成分分析是一种常用的特征选择算法,经典方法是计算各个特征之间的相关,但是相关无法评估变量间的非线性关系.互信息可用于衡量两个变量间相互依赖的强弱程度,且不局限于线性相关,鉴于此,提出一种基于互信息的主成分分析特征选择算法.该算法计算特征间的互信息,以互信息矩阵的特征值作为评价准则确定主成分的个数,并衡量主成分分析特征选择的效果.通过实例对所提出方法和传统主成分分析方法进行比较,并以神经网络为分类器分析分类效果.
范雪莉,冯海泓,原猛
中国科学院声学研究所东海研究站
摘 要:主成分分析是一种常用的特征选择算法,经典方法是计算各个特征之间的相关,但是相关无法评估变量间的非线性关系.互信息可用于衡量两个变量间相互依赖的强弱程度,且不局限于线性相关,鉴于此,提出一种基于互信息的主成分分析特征选择算法.该算法计算特征间的互信息,以互信息矩阵的特征值作为评价准则确定主成分的个数,并衡量主成分分析特征选择的效果.通过实例对所提出方法和传统主成分分析方法进行比较,并以神经网络为分类器分析分类效果.
关键词:互信息;主成分分析;特征选择;