一种求解约束优化问题的改进差分进化算法
来源期刊:东北大学学报(自然科学版)2009年第7期
论文作者:黄章俊 王成恩 马明旭
文章页码:936 - 939
关键词:全局优化;差分进化;约束处理;最优变异;数值模拟;
摘 要:针对原始差分进化算法在求解约束全局优化问题时存在陷入局部最优的缺陷,提出一种改进的差分进化算法.该算法在保留原始差分进化算法全局搜索能力的基础上,采用基于规则的方法进行约束处理和种群个体的比较及选择,并利用种群相似度和最优变异操作改善种群进行全局范围搜索的多样性,提高算法跳出局部最优的能力.数值实验表明,该算法稳定性较好,目标函数评价次数较少,收敛速度较快,全局寻优能力较强,不仅能有效求解连续变量约束优化问题,也适用于离散变量或混合变量优化问题.
黄章俊,王成恩,马明旭
东北大学流程工业综合自动化教育部重点实验室
摘 要:针对原始差分进化算法在求解约束全局优化问题时存在陷入局部最优的缺陷,提出一种改进的差分进化算法.该算法在保留原始差分进化算法全局搜索能力的基础上,采用基于规则的方法进行约束处理和种群个体的比较及选择,并利用种群相似度和最优变异操作改善种群进行全局范围搜索的多样性,提高算法跳出局部最优的能力.数值实验表明,该算法稳定性较好,目标函数评价次数较少,收敛速度较快,全局寻优能力较强,不仅能有效求解连续变量约束优化问题,也适用于离散变量或混合变量优化问题.
关键词:全局优化;差分进化;约束处理;最优变异;数值模拟;